
Software containers
Or, the definitive solution for escaping the dependency hell
and ensuring scientific reproducibility.

Stefano Alberto Russo - INAF / University of Trieste

Introduction
Software containers are lightweight, standalone, executable packages of software that
include everything needed to run an application: code, runtime, system tools, system
libraries and settings.

They bring basically the same benefits of virtual machines but require a fraction of their
resources. For this reason, software containers are the perfect solution for providing
reproducible test fast and flexible working environments.

Containers are a standard in the IT industry since many years, and are gaining traction in
the scientific community as well.

This seminar will introduce the basics of software containerization
using the Docker engine, how to avoid the common pitfalls when using
them, and how to containerize scientific codes in order to make them
both reproducible and easily shareable.

Stefano Alberto Russo - INAF / University of Trieste

Why should you listen to me?
An hybrid profile:

- BSc in Computer Science

- MSc in Computational Physics

Started at CERN, as research fellow working on data analysis & Big Data

Then, 5 years in startups.

- Core team member of an IoT energy metering and analytics startup,

- Joined Entrepreneur First, Europe’s best deep tech startup accelerator

- ..and launched my own one :)

Now back into research:
- INAF and UniTS, working on resource-intensive data analysis

- adjunct prof. of computer science at University of Trieste

- plus, experienced consultant for a number of private companies

Stefano Alberto Russo - INAF / University of Trieste

Pointers

Stefano Alberto Russo - INAF / University of Trieste

stefano.russo@gmail.com

https://sarusso.github.io

https://twitter.com/_sarusso

mailto:stefano.russo@gmail.com
https://sarusso.github.io
https://twitter.com/_sarusso

The deal
1) I will use Docker as reference, but the concepts are 100% engine-agnostic.

2) Always interrupt if you have question, doubs, something not clear, curiosities.
Let’s try to keep it interactive!

3) Over the talk, think about a concrete use case close to your work.
We can discuss a few at the end.

Stefano Alberto Russo - INAF / University of Trieste

Outline
● The dependency hell problem

○ Meet Mike
○ Solutions spectrum

● Containers for the win
○ Meet Bill
○ Main concepts
○ Docker

● Containers hands-on
○ Using containers
○ Building your first container
○ Sharing containers

Stefano Alberto Russo - INAF / University of Trieste

Outline
● The dependency hell problem

○ Meet Mike
○ Solutions spectrum

● Containers for the win
○ Meet Bill
○ Main concepts
○ Docker

● Containers hands-on
○ Using containers
○ Building your first container
○ Sharing containers

Stefano Alberto Russo - INAF / University of Trieste

The dependency hell problem
→ Meet Mike

Mike wants to install a new software.

Mike cannot find a precompiled version that works with his OS and/or libraries.

Mike ask/Google for help and get some basic instructions - like “compile it”.

Mike starts downloading all the development environment, and soon realizes that
he needs to upgrade (or downgrade!) some parts of his main Operating Systems.

During this process, something goes wrong.

Mikes spends an afternoon fixing his own OS, and all the next day
in trying to compile the software. Which at the end turns out not to
do what he wanted.

Stefano Alberto Russo - INAF / University of Trieste

The dependency hell problem
→ Solutions spectrum

Stefano Alberto Russo - INAF / University of Trieste

Proper
requirements

Statically
linked

binaries

Virtual
environments Containerization VMs VMs with

hardware
emulation

The dependency hell problem
→ Solutions spectrum

Stefano Alberto Russo - INAF / University of Trieste

Proper
requirements

Statically
linked

binaries

Virtual
environments Containerization VMs VMs with

hardware
emulation

The dependency hell problem
→ Proper requirements

- Carefully keep track of what libraries/OS features are used in development and report
them on the documentation, for each release.

- Prone to human error we stop here.

Next!

Stefano Alberto Russo - INAF / University of Trieste

The dependency hell problem
→ Virtual environments

- Work in a reproducible environment where libraries are the same for developers and for
users. Each release has a virtual environment definition.

- Requires the user to set up and activate its own environment,
and works only with some libraries (i.e. Python),

- Not a comprehensive solution and prone to human error we stop here.

Next!

Stefano Alberto Russo - INAF / University of Trieste

The dependency hell problem
→ Statically linked binaries

- Works only for compiled or compilable languages we stop here.

Next!

Stefano Alberto Russo - INAF / University of Trieste

The dependency hell problem
→ Statically linked binaries

- Works only for compiled or compilable languages we stop here.

Next!

Stefano Alberto Russo - INAF / University of Trieste

The dependency hell problem
→ Solutions spectrum

Stefano Alberto Russo - INAF / University of Trieste

Proper
requirements

Statically
linked

binaries

Virtual
environments Containerization VMs VMs with

hardware
emulation

The dependency hell problem
→ Virtual machines with hardware emulation

- Well… a bit of over-engineering. we stop here.

Next!

Stefano Alberto Russo - INAF / University of Trieste

The dependency hell problem
→ Virtual machines

- Works out-of-the box and does not touch the main OS;

- Allows to quickly test a given software / library;

- Need to download a (big) pre-built, trusted image (no “source” code);

- Requires pre-allocating dedicated memory at startup, and an entire boot;

- Not suitable for much more than just giving the software a try;

- You will not find much software packaged in this way.

cons > pros we stop here.

 ... but we are on the right path. We want this kind of insulation!

Stefano Alberto Russo - INAF / University of Trieste

The dependency hell problem
→ Containerization

Stefano Alberto Russo - INAF / University of Trieste

Proper
requirements

Statically
linked

binaries

Virtual
environments Containerization VMs VMs with

hardware
emulation

The dependency hell problem
→ Containerization

Containers are lightweight, standalone, executable packages of software that include
everything needed to run an application:

- code
- runtime
- system tools
- system libraries
- settings etc.

Containers allow to reliably move and distribute software from one
computing environment to another, without the burden of VMs.

Stefano Alberto Russo - INAF / University of Trieste

The dependency hell problem
→ Containerization

Stefano Alberto Russo - INAF / University of Trieste

Proper
requirements

Statically
linked

binaries

Virtual
environments

Containerization

VMs VMs with
hardware
emulation

Docker
(closer to a VM)

Singularity
(closer to an environment)

Podman
(closer to a process)

The dependency hell problem
→ Containerization

Stefano Alberto Russo - INAF / University of Trieste

https://sarusso.github.io/blog_container_engines_runtimes_orchestrators.html

https://sarusso.github.io/blog_container_engines_runtimes_orchestrators.html

Stefano Alberto Russo - INAF / University of Trieste

The dependency hell problem
→ Containerization

Outline
● The dependency hell problem

○ Meet Mike
○ Solutions spectrum

● Containers for the win
○ Meet Bill
○ Main concepts
○ Docker

● Containers hands-on
○ Using containers
○ Building your first container
○ Sharing containers

Stefano Alberto Russo - INAF / University of Trieste

Containers for the win
→ Meet Bill

Bill wants to install a new software.

Bill cannot find a precompiled version that works with his OS and/or libraries.

Bill ask/Google for help and finds out that there is a container for it.

Bill pulls the container and runs it.

Bill immediately discovers that theat software is not suitable for his research,
and finds a more appropriate one (as a container, of course!)

Bill spends the afternoon writing conclusions on his very important
research using his new software while enjoying a hot cup of latte.

Stefano Alberto Russo - INAF / University of Trieste

Containers for the win
→ Meet Bill

Bill wants to install a new software.

Bill cannot find a precompiled version that works with his OS and/or libraries.

Bill ask/Google for help and finds out that there is a container for it.

Bill pulls the container and runs it.

Bill immediately discovers that theat software is not suitable for his research,
and finds a more appropriate one (as a container, of course!)

Bill spends the afternoon writing conclusions on his very important
research using his new software while enjoying a hot cup of latte.

→ be like Bill.

Stefano Alberto Russo - INAF / University of Trieste

Containers for the win
→ Main concepts

The idea of containers is to insulate a single process from your Operating System, and to:

- Let it live in its own space, including its own network;

- Let it have its own File System with its own libraries;

- Allow to natively access hardware without virtualization;

- Avoid booting an entire Virtual machine and to pre-allocate
dedicated memory.

You might think about them as Virtual Machines in first approximation

→ but keep in mind that they are two completely different beasts.

Stefano Alberto Russo - INAF / University of Trieste

Containers for the win
→ Main concepts

Stefano Alberto Russo - INAF / University of Trieste

Guest (VM) OS

Virtual Machines Engine (Hypervisor)

Host OS

Dependencies

Guest (VM) OS Guest (VM) OS

Dependencies Dependencies

Application 2Application 1 Application 3

Hardware

Container Engine

Container Container Container

Host OS

Dependencies Dependencies

Application 2Application 1 Application 3

Hardware

Virtual Machines Software Containers

Containers for the win
→ Main concepts

Stefano Alberto Russo - INAF / University of Trieste

How to run a container?

1) Get or build a container image (think about it as a file)

2) Run the image: this is your container

Usually:

..where “docker” can be replaced with your container engine of choice, e.g Podman.

Note: many engines, if cannot find the image locally, will automatically look online.

docker run my_container

Containers for the win
→ Main concepts

Stefano Alberto Russo - INAF / University of Trieste

Example: Docker hello world!

$ docker run hello-world

Containers for the win
→ Main concepts

Stefano Alberto Russo - INAF / University of Trieste

Example: Docker hello world!

$ docker run hello-world

ste@Stes-MacAir:INAF $ docker run hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

2db29710123e: Pull complete

Digest: sha256:6d60b42fdd5a0aa8a718b5f2eab139868bb4fa9a03c9fe1a59ed4946317c4318

Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working correctly.

Containers for the win
→ Main concepts

Stefano Alberto Russo - INAF / University of Trieste

$ docker run -it python:3.8

Containers for the win
→ Main concepts

Stefano Alberto Russo - INAF / University of Trieste

$ docker run --entrypoint /bin/bash -it python:3.8

Containers for the win
→ Main concepts

How to share files with a container? → volumes

Stefano Alberto Russo - INAF / University of Trieste

Container Engine

Container Container Container

Host OS

Dependencies Dependencies

Application 2Application 1 Application 3

Hardware

We are creating a bridge

Containers for the win
→ Main concepts

Example: make your home folder visible from within a container

Stefano Alberto Russo - INAF / University of Trieste

$ docker run -it -v $HOME:/data python:3.8

Containers for the win
→ Main concepts

Example: make your home folder visible from within a container

Stefano Alberto Russo - INAF / University of Trieste

$ docker run -it -v $HOME:/data python:3.8

Python 3.8.12 (default, Dec 21 2021, 10:45:09)

[GCC 10.2.1 20210110] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import os

>>> os.listdir('/data')

['Applications', 'Desktop','Documents', 'Downloads', 'Dropbox', 'iCloud',

'Library', 'Movies', 'Music', 'Pictures', 'Public']

Containers for the win
→ Main concepts

How to access servers* in a containers? → port mapping

*e.g. a Jupyter Notebook server

Stefano Alberto Russo - INAF / University of Trieste

Container Engine

Container Container Container

Host OS

Dependencies Dependencies

Application 2Application 1 Application 3

Hardware

We are creating a bridge

$ docker run -p 9001:8888 jupyter/tensorflow-notebook:tensorflow-2.4.1

Containers for the win
→ Main concepts

Example: two Jupyter notebooks running with two Tensorflow versions

Stefano Alberto Russo - INAF / University of Trieste

$ docker run -p 9002:8888 jupyter/tensorflow-notebook:tensorflow-2.4.3

$ python3 -m unittest discover

..

--

Ran 90 tests in 41.405s

Containers for the win
→ Main concepts

Performance aspects

Stefano Alberto Russo - INAF / University of Trieste

$ python3 -m unittest discover

..

--

Ran 90 tests in 34.108s

Testing a package without
a container, on OSX

Testing a package inside a
container on OSX: it is even faster!

Containers for the win
→ Main concepts

How to share containers? → registries (the GitHub for software containers)

Stefano Alberto Russo - INAF / University of Trieste

Containers for the win
→ Main concepts

How to share containers? → registries (the GitHub for software containers)

Stefano Alberto Russo - INAF / University of Trieste

Containers for the win
→ Docker

- Modern containerization solution, open source + freemium

- Extremely popular, the “de facto” containerization standard

- Incremental File System

- Plenty of software on Docker Hub

- Native on Linux

- Almost native on Macs post-2011 and Windows 10 (through a light VM)

→ Issues with new Apple M1 (ARM) chips!

Stefano Alberto Russo - INAF / University of Trieste

Containers for the win
→ Docker

- Relies on a system daemon to manage containers

- Running containers are seen as (micro)services

- Containers have an IP address by default

- Extensive support for networking between containers

- Requires a privileged user (do not expect to do a “docker run” on clusters)

- Loads of orchestrators (docker-compose, kubernetes..)

Stefano Alberto Russo - INAF / University of Trieste

Containers for the win
→ Docker

Stefano Alberto Russo - INAF / University of Trieste

Common commands

docker build: Build a container

docker pull: Pull a container (from a registry)

docker run: Run a container (and execute the default command, or a custom one)

docker ps: List running containers

docker exec: Run a command in a running container

docker stop: Stop a running container

docker rm: Remove a container

Containers for the win
→ Docker

Stefano Alberto Russo - INAF / University of Trieste

Isolation (to keep in mind)

Filesystem at runtime: completely isolated by default, use volumes to bind folders

Network: isolated within the Docker engine, use --net-host to use the host network

Environment at runtime: from scratch

Outline
● The dependency hell problem

○ Meet Mike
○ Solutions spectrum

● Containers for the win
○ Meet Bill
○ Main concepts
○ Docker

● Containers hands-on
○ Using containers
○ Building your first container
○ Sharing containers

Stefano Alberto Russo - INAF / University of Trieste

- If you want to follow, ensure you can run the hello world

Containers hands-on
→ Start

$ docker run hello-world

Stefano Alberto Russo - INAF / University of Trieste

Containers hands-on
→ Gcc on Docker Hub

Stefano Alberto Russo - INAF / University of Trieste

- You are downloading a minimalistic Linux distribution (Debian Jessie, as we will see later) on which
has been installed gcc (version 5.4).

- Thanks to Docker’s incremental file system, another container based
on Debian Jessie will not require to download/store it again.

$ docker pull gcc:5.4
5.4: Pulling from library/gcc
aa18ad1a0d33: Extracting [================================>] 33.98 MB/52.6 MB
15a33158a136: Download complete
f67323742a64: Download complete
c4b45e832c38: Downloading [===================>] 51.59 MB/134.7 MB
e5d4afe2cf59: Download complete
4c0020714917: Downloading [=======>] 30.59 MB/200.4 MB
b33e8e4a2db2: Download complete
c8dae0da33c9: Waiting

Containers hands-on
→ Gcc on Docker Hub (downloading)

Stefano Alberto Russo - INAF / University of Trieste

$ docker pull gcc:5.4

5.4: Pulling from library/gcc

aa18ad1a0d33: Pull complete

15a33158a136: Pull complete

f67323742a64: Pull complete

c4b45e832c38: Pull complete

e5d4afe2cf59: Pull complete

4c0020714917: Pull complete

b33e8e4a2db2: Pull complete

c8dae0da33c9: Pull complete

Digest: sha256:e6ef7f0295b9d915f8521de360e30803bf8561cfb9cea8e320aa66761be8ec42

Status: Downloaded newer image for gcc:5.4

 Terminology reminder:

- image: a “file” from which you can run a container
- container: an “entity” run from an image

Containers hands-on
→ Gcc on Docker Hub (downloaded)

Stefano Alberto Russo - INAF / University of Trieste

$ docker run gcc:5.4 gcc -v
Using built-in specs.
COLLECT_GCC=gcc
COLLECT_LTO_WRAPPER=/usr/local/libexec/gcc/x86_64-linux-gnu/5.4.0/lto-wrapper
Target: x86_64-linux-gnu
Configured with: /usr/src/gcc/configure --build=x86_64-linux-gnu --disable-multilib
--enable-languages=c,c++,fortran,go
Thread model: posix
gcc version 5.4.0 (GCC)
$

Containers hands-on
→ Run Gcc (5.4)

Stefano Alberto Russo - INAF / University of Trieste

#include<stdio.h>

int main()
{
 printf("I run a very complex simulation and the result is 42\n");
}

Our test.c code:

Containers hands-on
→ Compile your code with Gcc (5.4)

Stefano Alberto Russo - INAF / University of Trieste

$ docker run -v$PWD:/data gcc:5.4 gcc -o /data/test.bin --verbose /data/test.c

Using built-in specs.

COLLECT_GCC=gcc

COLLECT_LTO_WRAPPER=/usr/local/libexec/gcc/x86_64-linux-gnu/5.4.0/lto-wrapper

Target: x86_64-linux-gnu

Configured with: /usr/src/gcc/configure --build=x86_64-linux-gnu --disable-multilib

--enable-languages=c,c++,fortran,go

Thread model: posix

gcc version 5.4.0 (GCC)

COLLECT_GCC_OPTIONS='-o' '/data/Test/test.bin' '-v' '-mtune=generic' '-march=x86-64

[...]

$

Containers hands-on
→ Compile your code with Gcc (5.4)

Stefano Alberto Russo - INAF / University of Trieste

$ Test/test.bin

-bash: Test/test.bin: cannot execute binary file

$ docker run -v$PWD:/data gcc:5.4 /data/test.bin

ste@Stes-MacAir:Examples (master) $

I just ran a very complex simulation and the result is 42

On your computer → no!

Inside the container → yes!

Containers hands-on
→ Run your code compiled with Gcc (5.4)

Stefano Alberto Russo - INAF / University of Trieste

Execute a (bash) shell in the container

List the root directories

$ docker run -it gcc:5.4 bash
root@b9c1414bab3d:/#

root@b9c1414bab3d:/# ls

bin boot dev etc home lib lib64 media mnt opt

proc root run sbin srv sys tmp usr var

You are root!

Containers hands-on
→ Enter in the Gcc (5.4) container

Stefano Alberto Russo - INAF / University of Trieste

List running processes

Get the container IP address

root@b9c1414bab3d:/# ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 1 13:54 pts/0 00:00:00 bash

root 8 1 0 13:54 pts/0 00:00:00 ps -ef

root@b9c1414bab3d:/# ip addr show dev eth0
 [...]

 inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0
 [...]

Containers hands-on
→ Enter in the Gcc (5.4) container

Stefano Alberto Russo - INAF / University of Trieste

When you exit a container, you lose every change to the container File System

List running Docker containers (on another shell of your computer)
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
b9c1414bab3d gcc:5.4 "bash" 3 seconds ago Up 1 second friendly_goodall

Exit the shell, and therefore the container
root@b9c1414bab3d:/# exit
$

Containers hands-on
→ Enter in the Gcc (5.4) container

Stefano Alberto Russo - INAF / University of Trieste

Containers hands-on
→ The Dockerfile

Stefano Alberto Russo - INAF / University of Trieste

- The Dockerfile is what defines a Docker Container. Think about it as its source code.

- When you build it, it generates a Docker Image. When you run a Docker Image, this
“becomes” a Docker Container, as mentioned before.

FROM <base image>

RUN <a setup command>

COPY <source file/folder on your OS> <dest file/folder in the container>

RUN <another setup command>

Containers hands-on
→ The Dockerfile

Stefano Alberto Russo - INAF / University of Trieste

There is NO black magic in Docker.

Now that we know that its source code is in the Dockerfile, we can see on
what the Gcc (5.4) image is built from.

Containers hands-on
→ On what is the Gcc (5.4) container built upon?

Stefano Alberto Russo - INAF / University of Trieste

Containers hands-on
→ On what is the Gcc (5.4) container built upon?

Stefano Alberto Russo - INAF / University of Trieste

Containers hands-on
→ On what is the Gcc (5.4) container built upon?

Stefano Alberto Russo - INAF / University of Trieste

Containers hands-on
→ On what is the Gcc (5.4) container built upon?

Stefano Alberto Russo - INAF / University of Trieste

Containers hands-on
→ On what is the Gcc (5.4) container built upon?

Stefano Alberto Russo - INAF / University of Trieste

Containers hands-on
→ On what is the Gcc (5.4) container built upon?

Stefano Alberto Russo - INAF / University of Trieste

We will now include and compile your test code directly from a Dockerfile

FROM gcc:5.4

Add the test code
COPY test.c /opt

Compile the test code
RUN gcc -v -o /opt/test.bin /opt/test.c

Containers hands-on
→ Your first Dockerfile

Stefano Alberto Russo - INAF / University of Trieste

Let’s now build it. Place the Dockerfile and the “test.c” in a folder named “Test”, then:

$ docker build Test -t testcontainer

Sending build context to Docker daemon 10.24kB

Step 1/3 : FROM gcc:5.4

 ---> b87db7824271

Step 2/3 : COPY test.c /opt

 ---> f5478f7830ee

Step 3/3 : RUN gcc -v -o /opt/test.bin /opt/test.c

 ---> Running in c839379f1fbe

Using built-in specs.

COLLECT_GCC=gcc

[...]

Removing intermediate container c839379f1fbe

 ---> 2f0c6f89fdc0

Successfully built 2f0c6f89fdc0

Successfully tagged testcontainer:latest

Containers hands-on
→ Your first container

Stefano Alberto Russo - INAF / University of Trieste

..and run it:

$ docker run testcontainer /opt/test.bin
I just ran a very complex simulation and the result is 42

Containers hands-on
→ Your first container

Stefano Alberto Russo - INAF / University of Trieste

$ docker save testcontainer > testcontainer.tar

..and share it (old school):

$ docker load < testcontainer.tar

Containers hands-on
→ Your first container

Stefano Alberto Russo - INAF / University of Trieste

..and share it (Docker Hub):

$ docker tag testcontainer sarusso/testcontainer
$ docker push sarusso/testcontainer
The push refers to repository [docker.io/sarusso/testcontainer]
4e139ce93449: Pushed
8e5d12c6cc1e: Pushed
531d0aa62df3: Mounted from library/gcc
2ac9aba62fc1: Mounted from library/gcc
4e778218c153: Mounted from library/gcc
8f816dba9ff6: Mounted from library/gcc
7381522c58b0: Mounted from library/gcc
ecd70829ec3d: Mounted from library/gcc
d70ce8b0dad6: Mounted from library/gcc
18f9b4e2e1bc: Mounted from library/gcc
latest: digest: sha256:21563d1b6645af4cf73f01cc471b5f1a8bb902f7f1903bac4b9b878433eecf5e size: 2421

Containers hands-on
→ Your first container

Stefano Alberto Russo - INAF / University of Trieste

If we rebuild the testcontainer, the caching jumps in. It takes few seconds.

$ docker build Test -t testcontainer

Sending build context to Docker daemon 10.24kB

Step 1/3 : FROM gcc:5.4

 ---> b87db7824271

Step 2/3 : COPY test.c /opt

 ---> Using cache

 ---> f5478f7830ee

Step 3/3 : RUN gcc -v -o /opt/test.bin /opt/test.c

 ---> Using cache

 ---> 2f0c6f89fdc0

Successfully built 2f0c6f89fdc0

Successfully tagged testcontainer:latest

..this is possible thanks to version hashes

Containers hands-on
→ Versioning: hashes, tags, etc.

Stefano Alberto Russo - INAF / University of Trieste

- An hash is the result of applying an hash function

- An hash function takes some input and generates a fixed-size output, like:

47e0b9046c241cc4653b876c2a8ab01341c00754

- A good hash function allows to virtually never get the same hash from different inputs.

- In both Git and Docker the input is your code, and and hash represents a unique (saved)
state. Or, a particular point in your codebase “history”.

- Then, it happens that hashes can be linked together, forming hierarchies.

- A tag is a friendly name for an hash.

Containers hands-on
→ Versioning: hashes, tags, etc.

Stefano Alberto Russo - INAF / University of Trieste

Let’s have a look at the hashes for the first and second build

$ docker build Test -t testcontainer

Sending build context to Docker daemon 10.24kB

Step 1/3 : FROM gcc:5.4

 ---> b87db7824271

Step 2/3 : COPY test.c /opt

 ---> f5478f7830ee

Step 3/3 : RUN gcc -v -o /opt/test.bin /opt/test.c

 ---> Running in c839379f1fbe

Using built-in specs.

COLLECT_GCC=gcc

[...]

Removing intermediate container c839379f1fbe

 ---> 2f0c6f89fdc0

Successfully built 2f0c6f89fdc0

Successfully tagged testcontainer:latest

$ docker build Test -t testcontainer
Sending build context to Docker daemon 10.24kB
Step 1/3 : FROM gcc:5.4
 ---> b87db7824271
Step 2/3 : COPY test.c /opt
 ---> Using cache
 ---> f5478f7830ee
Step 3/3 : RUN gcc -v -o /opt/test.bin /opt/test.c
 ---> Using cache
 ---> 2f0c6f89fdc0
Successfully built 2f0c6f89fdc0
Successfully tagged testcontainer:latest

Containers hands-on
→ Versioning: hashes, tags, etc.

Stefano Alberto Russo - INAF / University of Trieste

- Both Git and Docker implement versioning with hashes, which are fully
deterministic, unlike version (incremental) numbers.

- In the Docker ecosystem everything is versioned

- For practical use, also the short hashes are allowed (and commonly used),
which are the first 7 characters for Git (i.e. “47e0b90”) and the first 12 for Docker.

- If by chance two hashes in the system starts with the same short hash, you will
be required to enter one more character or the full hash.

Stefano Alberto Russo - INAF / University of Trieste

Containers hands-on
→ Versioning: hashes, tags, etc.

p.s. the tag “5.4” for the gcc
Docker container is actually
saying that the tag is “gcc:54”.
Sorry for this! :(

The hash for the tag “gcc:5.4”
tag is “b87db7824271”

$ docker build Test -t testcontainer

Sending build context to Docker daemon 10.24kB

Step 1/3 : FROM gcc:5.4

 ---> b87db7824271

Step 2/3 : COPY test.c /opt

 ---> f5478f7830ee

Step 3/3 : RUN gcc -v -o /opt/test.bin /opt/test.c

 ---> Running in c839379f1fbe

Using built-in specs.

COLLECT_GCC=gcc

[...]

Removing intermediate container c839379f1fbe

 ---> 2f0c6f89fdc0

Successfully built 2f0c6f89fdc0

Successfully tagged testcontainer:latest

Stefano Alberto Russo - INAF / University of Trieste

Containers hands-on
→ Versioning: hashes, tags, etc.

Stefano Alberto Russo - INAF / University of Trieste

Containers hands-on
→ Where do you save your Dockerfiles?

..on a versioning system.

Stefano Alberto Russo - INAF / University of Trieste

Containers hands-on
→ Where do you save your Dockerfiles?

..on a versioning system.

There is no other alternative.

Do not work without versioning.

Seriously, don’t.

 → Use Dropbox or Google Drive if you think that more
 professional versioning tools, like Git, are an overkill.

Stefano Alberto Russo - INAF / University of Trieste

Containers hands-on
→ Where do you save your Dockerfiles?

Docker allows to have everything up and running, including dependencies etc.
with a single command.

This command trigger a build with a given set of dependencies (the ones you
wrote to install in the Dockerfile)

Over time, you will probably make changes in your Dockerfiles and in your code.

If you use a versioning system, you can jump back in time to a particular
version/hash, build it, and it will run exactly as it was running at that time

For managing multiple container versions simultaneously,
you can use tags

Stefano Alberto Russo - INAF / University of Trieste

Containers hands-on
→ The importance of versioning with Docker

Docker allows to have everything up and running, including dependencies etc.
with a single command.

This command trigger a build with a given set of dependencies (the ones you
wrote to install in the Dockerfile)

Over time, you will probably make changes in your Dockerfiles and in your code.

If you use a versioning system, you can jump back in time to a particular
version/hash, build it, and it will run exactly as it was running at that time

For managing multiple container versions simultaneously,
you can use tags

Stefano Alberto Russo - INAF / University of Trieste

Containers hands-on
→ The importance of versioning with Docker

1) With Docker,your code will build and run in the exact same way, on every
operating system, virtually forever.

2) If you want to give the code that generates the magic “42” answer to someone,
they will just need two commands* to have everything up and running:

docker build or pull

docker run

*plus some arguments

Stefano Alberto Russo - INAF / University of Trieste

Containers hands-on
→ Recap

- A versioning systems protects you first of all from yourself

- Using Docker with a versioning system allows to reach full reproducibility, starting from
a repository name and a short hash for a point in time/version.

- Using them even for small personal/research projects helps a lot

- If someone gives you a code without version control or that requires dependencies:

- First, put it under version control;

- Second, create a Dockerfile with all the commands and dependencies you will need to set it up
(which you will need anyway, by the way).

- ..and no, tomorrow you will not remember what you did.
No one does. :)

 Stefano Alberto Russo - INAF / University of Trieste

Containers hands-on
→ Recap

Thanks!
→ Questions?

Stefano Alberto Russo - INAF / University of Trieste

stefano.russo@gmail.com

https://sarusso.github.io

https://twitter.com/_sarusso

mailto:stefano.russo@gmail.com
https://sarusso.github.io
https://twitter.com/_sarusso

