
UNIVERSITÀ DEGLI STUDI
DI TRIESTE

XXXVI CICLO DEL DOTTORATO DI RICERCA IN SCIENZE DELLA

TERRA, FLUIDODINAMICA E MATEMATICA. INTERAZIONI E

METODICHE.

ROBUST ANOMALY DETECTION FOR

TIME SERIES DATA IN SENSOR-BASED

CRITICAL SYSTEMS

Settore scientifico-disciplinare: INF-01

Dottorando:
Stefano Alberto Russo

Coordinatore:
Prof. Stefano Maset

Supervisore:
Prof Luca Bortolussi

ANNO ACCADEMICO 2023/2024

a papà

Abstract

Critical systems are defined as systems where a malfunction can cause sig-

nificant economic damage, harm to the ecosystem, or endanger human life,

potentially resulting in the loss of lives. Financial, Energy, Healthcare, Trans-

portation, Telecommunication, Water Supply, and Defense systems are just

some of the more prominent examples of critical systems.

A particular role is played by sensor-based critical systems, which are deeply

intertwined between the digital and physical worlds, and where one or more

physical quantities are sampled at given time intervals, forming the so called

time series, for monitoring and/or control purposes. In both cases, it is impor-

tant to detect potential anomalies as they may indicate either a malfunction

of a sensor (which can lead to apply a control algorithm on unreliable data)

or a problem with the system dynamics itself (and thus posing a risk to its

integrity).

This thesis work aims at addressing such challenges, and in particular it

brings four main contributions: an extensive and critical overview of anomaly

detection, a methodological framework for reliably identifying the anomalies

in the context of sensor-based critical systems, a software library implement-

ing such methodology, and a real-world case study in the Water Distribution

Systems domain.

3

Contents

i) Extended abstract 6

ii) Acknowledgments 11

iii) List of figures and tables 12

1 Introduction 16

2 Critical systems 20

2.1 Taxonomy . 20

2.2 Control and monitoring . 21

2.2.1 SCADA . 21

2.2.2 Data loggers . 22

2.2.3 Internet of Things . 23

2.3 Time series data . 24

2.4 Anomaly detection . 26

2.4.1 Role . 26

2.4.2 Challenges . 26

3 Anomaly detection overview 30

3.1 Defining anomalies . 30

3.1.1 A naturally ill-defined concept 30

3.1.2 Anomalies vs. outliers 33

3.1.3 What is normality, after all? 34

3.2 Detecting anomalies . 35

3.2.1 Approaches . 35

3.2.1.1 Supervised . 36

3.2.1.2 Unsupervised 37

3.2.1.3 Semi-supervised 38

3.2.2 Techniques . 38

3.2.2.1 Analysis-based 39

3.2.2.2 Model-based 41

3.3 Evaluating anomalies . 45

4

4 Proposed methodological framework 47

4.1 Design choices . 47

4.1.1 Data processing . 47

4.1.2 Anomaly detection . 48

4.2 The anomaly index . 51

4.2.1 Formal definition . 51

4.2.2 Setting boundaries . 56

4.2.3 Error metrics . 59

4.3 Candidate models . 60

4.3.1 Naive . 61

4.3.2 Statistical . 61

4.3.3 Machine learning . 62

4.3.4 Deep learning . 62

4.4 Model selection . 63

4.4.1 General considerations 63

4.4.2 Fitness function . 63

4.4.3 Hyperparameter optimization 65

4.5 Benchmarking . 66

4.5.1 Available benchmarks and common flaws 66

4.5.2 Micro-benchmarking results 70

5 The Timeseria software library 76

5.1 Motivation and significance . 76

5.2 Related work . 77

5.3 Architecture and functionalities 81

5.3.1 Datastructures . 82

5.3.2 Operations . 84

5.3.3 Transformations . 84

5.3.4 Models . 85

5.4 Implementation . 87

5.5 Illustrative examples . 89

6 A case study: Water Distribution Systems 94

6.1 Introduction . 94

6.2 Description . 95

6.3 Methods . 97

6.3.1 Data pre-processing . 97

6.3.2 Model Selection . 98

6.3.3 Anomaly index settings 103

6.3.4 Marking anomalous events 103

6.4 Results . 104

7 Conclusions 111

5

Extended abstract

Critical systems are defined as systems where a malfunction can cause sig-

nificant economic damage, harm to the ecosystem, or endanger human life,

potentially resulting in the loss of lives. Financial, Energy, Healthcare, Trans-

portation, Telecommunication, Water Supply, and Defense systems are just

some of the more prominent examples of such critical systems.

A particular role is played by sensor-based critical systems, which are deeply

intertwined between the digital and physical worlds, and where one or more

physical quantities are sampled at given time intervals, forming the so called

time series, for monitoring and/or control purposes. In both cases, it is impor-

tant to detect potential anomalies as they may indicate either a malfunction

of a sensor (which can lead to apply a control algorithm on unreliable data)

or a problem with the system dynamics itself (and thus posing a risk to its

integrity).

Detecting anomalies in a timely and reliable manner in such systems, which

typically operate in ”harsh” conditions like humidity, moisture, dust, vibration,

shock, etc., and under strict operational requirements, is still an open problem.

The main challenges are related to the data quality, the resilience required by

the anomaly detection processes, the robustness of the algorithms, and the need

to provide clear indications to the operators about the potential anomalies and

their severity; while keeping the false positives under control and performing

the detection in a timely manner, usually in real-time or near real-time.

For example, it is very common for such systems to show several data losses,

due to the above mentioned harsh conditions. An anomaly detection pipeline

not taking into account such data losses would lead to several false positives,

and cause to inevitably loose operator’s trust. Similarly, arbitrarily setting

thresholds to discriminate normal versus anomalous data instances would not

necessarily reflect the true operational mode of the systems, thus leading either

to under-estimate or over-estimate the anomalies. Also, using simple binary

indications (as anomalous / not anomalous) would not allow to give the oper-

ators a sense of the severity of the anomaly, thus not allowing to calibrate (or

prioritize) their investigation and/or response. On the other hand, a continuous

yet uncapped anomaly score would have the same effect, if not worse. Lastly,

anomaly detection must be capable of detecting anomalies as soon as they show

themselves. However, many anomaly detection studies and techniques assume

to work in a static scenario, where all the data is available for inspection and

6

there is no incoming data flow.

This thesis work aim at addressing such challenges, and in particular it

brings four main contributions: an extensive and critical overview of anomaly

detection, a methodological framework for reliably identifying the anomalies

in the context of sensor-based critical systems, a software library implement-

ing such methodology, and a real-world case study in the Water Distribution

Systems domain.

Anomaly detection is a broad concept, and while the meaning of “anomaly”

might look as self-explanatory at first sight, when it has to be treated in a more

formal way it immediately reveals its ill-defined nature. This is rooted in the

intrinsic subjectivity of the notion of “normality”, which is hard to pinpoint

and that cause in turn the ill-definition of the term “anomaly”. One of the

most widely accepted definitions of anomalies is “an observation which devi-

ates so much from the other observations as to arouse suspicions that it was

generated by a different mechanism”. This definition was originally provided

by Hawkins in 1980, and formulated with respect to outliers (a term that, while

intimately entangled with anomalies, identifies yet another concept). However,

both terms share being ill-defined: how much is “so much”, and what is “sus-

picion”, exactly? They key to robust anomaly detection lies in fixing such two

terms, so that ambiguity is removed as much as possible.

Anomaly detection can be approached in three main ways: as a supervised,

unsupervised or semi-supervised problem. In the supervised approach, which

has ho be intended in its broader form, anomalies are assumed to be already

known. Most recent literature excludes such approach from anomaly detection,

as it should be framed rather as a classification or pattern recognition problem,

and so does this thesis work. If approaching anomaly detection in an unsuper-

vised way instead, no prior knowledge about the anomalies is assumed at all,

and the anomaly detection algorithms are challenged to find the most anoma-

lous data instances within a dataset autonomously. While very powerful for

data mining applications, in a real time or near real-time setting this approach

has intrinsic limitations, mainly related to the impossibility of assessing the

anomaly degree of the data instances in absolute terms, which consequentially

makes it hard to raise meaningful alarms. Semi-supervised anomaly detection

does not make any assumptions about anomalies, but makes a strong assump-

tion about what normality looks like. This allows to underpin the anomaly

detection process to a well known notion of normality, thus making it much

more robust. The downside of this approach is to require a “normal” dataset,

however, in the context of critical systems, it is relatively easy to obtain such

dataset because of the commissioning period these systems are usually subject

to, where they are closely followed by domain experts to ensure proper and

smooth operations. For these reasons, the semi-supervised anomaly detection

approach is the approach chosen for this thesis work.

Regardless of the approach, there are many techniques (or algorithms) for

anomaly detection. Some treat anomalies as outliers, others as isolated or “dis-

cording” data instances in a given metric, and yet other ones as data instances

7

that, given a model of normality, do not match the predictions. This last class

of techniques is also know as model-based anomaly detection, and has two main

benefits over the others, in particular with respect to time series data. First,

a model allows to capture well the temporal dependency between the obser-

vations, which are usually complex to take into account for with other tech-

niques. Second, and in particular with respect to the semi-supervised approach,

evaluating the accuracy of the underlying model allows to both calibrate and

indirectly assess the robustness of the anomaly detection process itself, which

is otherwise hard to evaluate. Directly evaluating an anomaly detection algo-

rithm is indeed challenging because of the intrinsic scarcity of the anomalies,

which can lead to potential over-fitting problems towards known anomalies,

and that can cause to rely on misleading accuracy metrics. Accuracy metrics

computed in this way indeed take into account only known anomalies, giving

little insights about how a given anomaly detection algorithm would perform

when it comes to truly unseen anomalies, which are likely the most interesting

ones.

The methodology for anomaly detection proposed in this thesis work is thus

based on semi-supervised, model-based anomaly detection. Moreover, given the

requirement of performing anomaly detection in a timely manner, in real-time

or near real-time, the natural choice is to employ forecasting models, where no

information about future events is used.

A key step of the proposed methodology is to define a so called anomaly

index, which quantifies the magnitude of the anomalies in a 0-1 range, for each

time step of the time series. Such index, which is defined in terms of the adher-

ence of an observation to a given model of normality, is based (and calibrated)

on the model’s error probability distribution. When zero, the anomaly index

indicates no suspicion of anomaly at all; when one, it indicates an (almost)

certain anomaly; while in between, it represents different magnitudes of the

potential anomalies. Besides providing a clear indication of the degree of sus-

picion of an anomaly, the anomaly index also allows to compare the output

of different models, being normalized to the 0-1 range. This is particularly

relevant not only when working with ensemble models, but also with multi-

variate time series, provided that using the same model to predict more than

one quantity can be seen as an ensemble model itself. In other words, in mul-

tivariate time series, the proposed methodology assigns an anomaly index to

each of the variables, and for each model used. Merging the various anomaly

indexes can then follow various strategies, the two extremes being performing

a maximum operation (thus looking for cases where only one of the models of

the ensemble spotted the anomaly), or the minimum (thus asking for global

agreement between all the models of the ensemble).

To implement the proposed methodology, and to address the challenges rel-

ative to the data quality and the resiliency, a relevant part of this thesis work

was focused on the development of a software library: Timeseria. This is an

object-oriented time series processing library implemented in Python, which in

general aims at making it easier to manipulate time series data and to build

8

statistical and machine learning models on top of it. Unlike common data

analysis frameworks, Timeseria builds up from well defined and reusable logi-

cal units (objects), which can be easily combined together in order to ensure

a high level of consistency. Thanks to this approach, it can address by design

several non-trivial issues often underestimated, such as handling data losses,

non-uniform sampling rates, differences between aggregated data and punctual

observations, time zones, daylight saving times, and more. Timeseria was devel-

oped following a set of software development best practices as modularization,

unit testing and containerization to ensure portability and reproducibility, and

it is available on GitHub and PyPI. In particular with respect to this thesis

work, Timeseria implements model-based anomaly detection using the anomaly

index introduced above, and it was used to test the proposed methodology on

a real world case study in the Water Distributions Systems domain.

Water Distributions Systems (WDS) are a core part of modern city infras-

tructures, providing a constant water flow from facilities as treatment plants

and wells to the final users. Over this path, many components are involved and

subject to potential failures, as pipes, valves, pumps, storage tanks, and more.

Leakages and breakages are the two most common type of failures, the second

being a direct cause of the first one, if small enough not to be disruptive.

A leakage in an underground pipe that goes unnoticed does not only mean

wasting a precious resource as water is, but can also cause erosion to the point

of creating voids in the above terrain. If such erosion occur in a urban context,

roads can collapse and building foundations can shift, posing a severe risk to

the population. In case of sudden breakages instead, part of the buildings in

the surroundings can be left without water, which is particularly problematic

should one of these buildings be a critical infrastructure itself, as an hospital.

Over the course of recent years, more and more WDS have been equipped

with remote monitoring systems for a number of reasons, including to better

understand their dynamic, perform optimisations, and schedule maintenance

tasks. However, many issues can arise with the sensors, in particular given the

harsh environment in which they operate. Sensors not working properly can

jeopardize such initiatives, and lead to unusable historical data.

It is therefore clear that having a robust anomaly detection process in place

that operates in a timely manner can bring significant benefits for such systems,

both in terms of detecting sensor issues and failures in the system itself, thus

allowing to promptly address them.

The case study considered in this thesis work consisted of 14 nodes of a

WDS in the Friuli Venezia Giulia region, in northern Italy. The dataset com-

prised flow rate and pressure sensor measurements for each node, sampled

at six-minute intervals. The dataset showed several data losses, all detected

and marked as such with the Timeseria library, which was used for data pre-

processing and to perform model-based anomaly detection, according to the

proposed methodology. Several forecasting models have been considered as

candidates for model-based anomaly detection. The choice fell on a set of deep

learning models, because of their ability to capture complex nonlinear depen-

9

dencies. Within the deep learning models suitable for time series forecasting,

the best compromise was then to use a Long Short Term Memory neural net-

work. To capture both the intrinsic correlation between the pressure and the

flow rate and their typical patterns in a separate way, a key step for the anomaly

detection process, an ensemble of two types of models was used. The first was

trained to predict the value for the next time step given only a window of past

data (the previous 24 hours), in order to capture the patterns. The second was

instead trained in order to capture the correlations. More in detail, such model

was trained to predict the value of a target quantity (e.g. flow rate) at the next

step given the contextual data at the same next time step (e.g. pressure). It

also used a much smaller window of past data (1 hour) to give some context to

the model but not enough to capture any pattern. Issues with the dynamics of

the WDS are most likely to be spotted by the first model, while issues with the

sensors by the second one. The outcome of the anomaly detection performed

with these two type of models where then merged together.

This case study showed how the methodology proposed in this thesis work

can be applied in a real world scenario in order to perform robust anomaly

detection from start to end. Trivial anomalies (as planned pipe closures) could

all be successfully identified with great confidence, while some more subtle and

nontrivial anomalies, often symptoms of upcoming issues as sensor failures,

could be identified as well. The anomaly index defined according to the pro-

posed methodology allowed differentiating such anomalies based on their mag-

nitude, thus enabling to prioritize their investigation. Lastly, no significant

false positives were found, as per intrinsic design of the proposed methodol-

ogy, which was one of they key requirements for implementing robust anomaly

detection in the context of critical systems.

10

Acknowledgments

This work has been supported by the Italian Research Center on High

Performance Computing, Big Data and Quantum Computing (ICSC). , an ini-

tiative funded by the European Union - NextGenerationEU - and the Italian

National Recovery and Resilience Plan (NRRP) - Mission 4, Component 2,

without which this work would not have been possible.

The case study presented in chapter 6 of this thesis was made possible

through the invaluable support of Idrostudi s.r.l., an Italian engineering firm

specializing in civil and environmental engineering with a focus on water re-

sources management. Their provision of a real-world, comprehensive dataset

enabled a realistic and informed case study, while the domain expertise shared

by Idrostudi’s team enriched the research with domain-specific insights, en-

hancing the practical relevance and applicability of this work.

11

List of figures and tables

Figures

1.1 An artistic representation of various critical systems. Image by

OpenAI DALL-E. 16

1.2 The Deepwater Horizon platform in flames after the blowout. . 17

1.3 Drill pipe pressures during negative pressure test, few hours be-

fore the blowout. 18

2.1 Example of a simple univariate time series. 25

2.2 Example of a multivariate time series by a single acquisition device. 25

2.3 Example of a multivariate time series by multiple acquisition

devices . 25

3.1 Example “normal” (a) and “anomalous” (b) measurements from

an instrument. 33

3.2 Example “normal” (a) and “anomalous” (b) bi-dimensional white

noise. 34

3.3 Visual representation of a window-based forecaster on a two-

variable time series (green dots for the first variable, blue dots

for the second). The target of the prediction are both variables

(highlighted in yellow). 42

3.4 Visual representation of a window-based contextual forecaster

on a two-variable time series (green dots for the first variable,

blue dots for the second). The target of the prediction is in this

case just the first variable (highlighted in yellow), which make

use of the second variable as well. 43

3.5 Visual representation of a window-based reconstruction model

on a two-variable time series (green dots for the first variable,

blue dots for the second). The target of the prediction are both

variables (highlighted in yellow), using values before and after

the gap. 44

12

4.1 An example (normal) distribution function f fitted on the errors

of a given model. 52

4.2 The adherence defined according to equation 4.5 plotted with

respect to the example (normal) distribution of Figure 4.1. . . 53

4.3 Visual representation of the adherence boundaries hstart and

hend and the associated errors. 54

4.4 Visual representation of the adherence boundaries hstart and

hend and the associated errors in a more realistic scenario than

Figure 4.3. 55

4.5 Visual representation of the adherence boundaries hstart and

hend and the associated errors on a logarithmic scale. 55

4.6 The anomaly index plotted for an example model and dataset,

using as lower boundary the maximum error (3.8) and as up-

per boundary a probability to obtain an error greater than the

boundary of 1 in 1010 (a) and of 1 in 1030 (b). 58

4.7 Error distributions on just “normal” data (a) and on both “nor-

mal” and “anomalous” data (b). 58

4.8 Air temperature “normal” data of the UCR benchmark. 71

4.9 Power demand “normal” data of the UCR benchmark. 72

4.10 Power demand “normal” data of the UCR benchmark, zoomed

on the first part. 72

4.11 Power demand “normal” data of the UCR benchmark, zoomed

on the first part. 72

4.12 Power demand “test” data of the UCR benchmark, zoomed on

one of the anomalies marked by the authors (highlighted in blue). 72

4.13 Example results on the air temperature data of the UCR bench-

mark with anomaly index breakdown on a per-model basis. LSTM0

is the model using the entire widow, while LSTM2 and LSTM4

are the models which had, respectively, two and four samples

removed from the last part of the window. 74

5.1 Timeseria base classes structure 82

5.2 Timeseria Git repository on GitHub. 88

5.3 Timeseria Sphinx-based documentation on Read The Docs. . . 89

5.4 The time series plotted, with an (automatic) aggregator factor of

ten. The area chart underlying the line chart indicates minimum

and maximum values for each aggregated data point, in order to

retain information about peaks. 90

5.5 The resampled time series plotted. The data loss index is ren-

dered as an overlapped red area chart. 90

5.6 The time series plotted together with the forecast. The forecast

is visible through its data index, rendered as a yellow area chart. 91

5.7 The time series plotted together with the anomaly index, ren-

dered as an orange area chart. 92

13

5.8 The aggregated time series plotted, as a step plot. To be noted

that the data loss index was recomputed, according to the ag-

gregation unit, and brought forward. 93

6.1 Example time series for one of the measurement points, over a

7-day period. 96

6.2 Example time series for one of the measurement points, over a

7-days period, and with a data loss (marked in red) 96

6.3 Example time series for one of the measurement points, over a

2-month period, with several data losses (marked in red) 97

6.4 Schematic representation of correlation-based (a) and pattern-

based (b) models setup. Each line of dots (green and blue)

represents a physical quantity. The yellow highlight represents

the prediction target (at t+ 1). 99

6.5 Evolution over 1000 generations of the correlation-based (a) and

pattern-based (b) models global elite fitness for the LSTM ar-

chitecture. 101

6.6 Evolution over 100 generations of the LSTM correlation-based

model for pressure: global elite fitness (a) and local elite fitness

(b). 101

6.7 Examples error distributions for bad (a) and good (b) fitness

individuals. 101

6.8 Representative data used for the evolutionary algorithm. 102

6.9 Example predictions for the correlation-based model on the flow

rate quantity. 105

6.10 Example predictions for the correlation-based model on the pres-

sure quantity. 105

6.11 Example trivial anomaly #1. Combined (top), and with break-

down (bottom). Pressure rescaled for readability 107

6.12 Example trivial anomaly #3. Combined (top), and with break-

down (bottom). Pressure rescaled for readability 108

6.13 Example trivial anomaly #3. Combined (top), and with break-

down (bottom). Pressure rescaled for readability 108

6.14 Example nontrivial anomaly #1. Combined (top), and with

breakdown (bottom). Pressure rescaled for readability 109

6.15 Example nontrivial anomaly #2. Combined (top), and with

breakdown (bottom). Pressure rescaled for readability 110

6.16 Example of a pattern drift correctly not marked as anomalous. 110

14

Tables

4.1 Parameters of a generalised normal error distribution fitted on

the prediction errors of a model fitted on just “normal” data

(distribution a) and on both “normal” and “anomalous” data

(distribution b). 58

4.2 Common flaws of time series anomaly detection benchmarks. . 69

4.3 Benchmarking results on the UCR anomaly detection dataset. . 75

4.4 Mmicro-benchmarking results on the UCR anomaly detection

dataset. 75

5.1 Comparison of Timeseria with similar solutions (Darts, Kats,

ETNA). [1] Such methods are intended as functions that per-

form their task in just one call, without requiring any extra

code. [2] By “standard” performance it has to be intended the

performance that can be obtained when relying on Pandas or

Xarray data structures. 80

6.1 Evolutionary fitness results for the correlation-based models. . 102

6.2 Evolutionary fitness results for the patter-based models. 102

6.3 Accuracies for the correlation-based model. 104

6.4 Accuracies for the pattern-based model. 105

15

Chapter 1

Introduction

Critical systems are defined as systems where a malfunction can cause sig-

nificant economic damage, harm to the ecosystem, or endanger human life,

potentially resulting in the loss of lives. Financial, Energy, Healthcare, Trans-

portation, Telecommunication, Water Supply, and Defense systems are just

some of the more prominent examples of critical systems.

In general, critical systems operate under high-stakes, high-risk conditions,

where even minor failures can lead to significant consequences, and have there-

fore to be protected in the best possible way.

Figure 1.1: An artistic representation of various critical systems. Image by OpenAI DALL-E.

16

In 2010, the Deepwater Horizon oil rig suffered from a major failure. It

caused the death of 11 workers, and polluted the gulf of Mexico with almost

a billion liters of oil , with unquantifiable long term damage to the ecosystem.

Economic consequences on fishing and tourism were also severe, besides the cost

of the platform itself of about 560 million US dollars. British Petroleum (BP)

had to pay over $60 billion US dollars in fines, settlements, and cleanup costs.

As of today, the Deepwater Horizon platform is one of the major disasters in

recent times, and the largest marine oil spill in history.

Figure 1.2: The Deepwater Horizon platform in flames after the blowout.

After the disaster, a common question emerged among experts: “how could

it possibly have happened?”. Countless investigations have been carried out,

given the impact of the failure, and the causes narrowed down to a single root

factor that started the chain of catastrophic events: a pressure test whose

results were misinterpreted by the operators (Figure 1.3).

The official aftermath report [55] states that “the real time drill pipe pres-

sure started dropping, which indicates a leak bleeding off the pressure some-

where” and that the investigators found “no evidence that the crew was aware

of this indicator”. In other words, the test showed unusual pressure discrepan-

cies, that the crew misinterpreted and considered as still normal.

We will never know if the Deepwater Horizon disaster could have been

avoided with modern anomaly detection techniques. What we do know, how-

ever, is that any effort towards building systems that could prevent it from

happening again is a step forward.

In the context of critical systems, a particular role is played by the so

called sensor-based critical systems, where one or more physical quantities are

sampled at given time intervals for monitoring and/or control purposes. In

17

Figure 1.3: Drill pipe pressures during negative pressure test, few hours before the blowout.

both cases, it is important to detect potential anomalies as they may indicate

either a malfunction of a sensor (which can lead to apply a control algorithm

on unreliable data) or a problem with the system dynamics itself (and thus

posing a risk to its integrity, as in the case of the Deepwater Horizon).

Having a robust anomaly detection process in place, that operates in a

timely manner, can bring significant benefits to such systems, both in terms of

detecting sensor issues and system failures, thus allowing to promptly address

them.

Anomaly detection is a broad concept, and while the meaning of “anomaly”

might look as self-explanatory at first sight, when it has to be treated in a more

formal way it immediately reveals its ill-defined nature. This is rooted in the

intrinsic subjectivity of the notion of “normality”, which is hard to pinpoint

and that cause in turn the ill-definition of the term “anomaly”.

One of the most widely accepted definitions of anomalies is “an observation

which deviates so much from the other observations as to arouse suspicions

that it was generated by a different mechanism”. This definition was originally

provided by Hawkins in 1980, and formulated with respect to outliers (a term

that, while intimately entangled with anomalies, identifies yet another concept).

However, both terms share being ill-defined: how much is “so much”, and what

is “suspicion”, exactly?

While anomaly detection has been tackled extensively over the recent years,

the entire field is facing major challenges, mainly because of such underlying

ambiguity. A recent article, titled “Current Time Series Anomaly Detection

Benchmarks are Flawed and are Creating the Illusion of Progress” [88] provides

a quite self-explanatory statement about the current situation.

Over-rewarding metrics, questionable ground truths, and the constant pres-

ence of trivial anomalies in the benchmarking datasets all cause a false sense

of reliability that ends up in causing several false positives.

18

In particular with respect to critical systems, any false positive, triggered

by either a data loss, an error in a sensor reading, or because of denying such

ambiguity instead of attempting to ground it, would inevitably cause to loose

operator’s trust, with the effect of undermining any effort.

Alerting the operators on a solid basis about the potential anomalies is

therefore the first and foremost requirement, and the solution starts by defining

what “so much” and “suspicion” mean, so that ambiguity is removed as much

as possible.

This thesis work brings four main contributions towards this goal, which

can be summarized as:

1. an extensive and critical overview of anomaly detection;

2. a methodological framework for reliably identifying anomalies;

3. a software library implementing such methodology; and

4. a real-world case study in the Water Distribution Systems domain.

19

Chapter 2

Critical systems

2.1 Taxonomy

Critical systems play a crucial role in modern life and refer to any system,

whether hardware, software, or a combination of both, that is essential for the

operations of a larger system or organization, and whose failure or malfunction

can have serious consequences. Such consequences can include significant eco-

nomic damage, harm to the ecosystem, or endangering human life, potentially

resulting in the loss of lives.

Financial, Energy, Healthcare, Transportation, Telecommunication, Water

Supply, and Defense systems are just some of the more prominent examples of

such critical systems, which can be sub-divided in four main types [35]:

1. Safety-Critical systems, where failure can lead to loss of life, serious per-

sonal injury, or damage to the natural environment;

2. Mission-Critical systems, where failure can lead to the inability of com-

pleting the overall objectives;

3. Business-Critical Systems, which are essential for the operation of a busi-

ness or organization;

4. Security-Critical systems, which if compromised can cause theft or loss of

sensitive data, or disruption in enforcing authentication and authoriza-

tion.

A particular role is played by sensor-based critical systems, which are

transversal to such categories, although usually more concentrated in the first

two. In sensor-based critical systems, one or more sensors are read at given time

intervals, either for monitoring purposes or to trigger specific actions, possibly

in a feedback loop mode.

For example, in industrial process control many applications use feedback

loops to ensure optimal production conditions: sensors as pressure, tempera-

ture, and flow rate are constantly monitored and the system is then adjusted

to maintain both efficiency and safety.

20

The key difference between sensor-based and generic critical systems lies in

their physical component, which makes them deeply intertwined between the

digital and physical worlds. This kind of entanglements has usually two main

implications:

1. the presence of an underlying phenomena obeying physical laws that can

be captured, and

2. the intrinsic challenges of measuring physical quantities in a real-world,

and possibly harsh, setting.

With respect to a financial critical system as the stock market, the differ-

ence should be pretty clear: there is no physical phenomena underlying stock

exchanges, and the stock market data is very accurate.

Instead, an air pollution monitoring system can capture specific air disper-

sion mechanisms, involving several environmental factors as wind, atmospheric

pressure and air temperature. Moreover, measuring air pollutants is subject to

several technical issues: rain and dust, as well as highly variable temperatures

can severely affect the quality of the readings, if not causing the sensors to fail

entirely.

By “harsh” conditions, similar settings are usually implied, where issues due

to humidity, moisture, dust, vibration, shock, magnetic interference, etc. can

severely affect sensor measures. Not all sensor-based critical systems operate

in harsh conditions, but most of them do.

2.2 Control and monitoring

Within sensor-based critical systems, “control and monitoring” refers to the

continuous process of managing system operations and tracking performance

metrics to ensure stability, safety, and adherence to specified operational pa-

rameters.

A key aspect when automating this process is to make use of technologies

capable of handling the above mentioned harsh conditions, together with strict

operational needs, which require specific design choices. Common consumer

electronics fall short, leaving space to the so called “rugged” or “industrial”

components”, which can deliver the required reliability, precision, and fail-safe

operations.

However, over the recent years some of these requirements have been pro-

gressively relaxed, in particular with respect to monitoring-only applications,

in order to benefit from the advances in the Information Technology (IT) space.

2.2.1 SCADA

Supervisory Control And Data Acquisition (SCADA) is a control system ar-

chitecture placed on top of hardware solutions which are capable of interfacing

with sensors and actuators, as the Programmable Logic Controllers (PLCs)

[23]. These are industrial computers that has been ruggedized and adapted

21

for the control of industrial processes, thus providing the standards required

for such applications, as resistance to shock and vibration. SCADA systems

are used in most industrial processes, as steel making, power generation and

distribution, chemistry, etc. and are thus central in critical systems as well.

Historically, SCADA systems are closed systems, limiting the interoper-

ability options to the bare minimum. When connectivity is required, SCADA

systems usually make use of dedicated cabled connections, resorting to wireless

connectivity only when strictly necessary, using domain-specific technologies.

With the advent of the computer Local Area Networks (LAN), the oper-

ating scenario started to change, given the great benefits that these systems

could gain from centralizing some common functionalities over the network, as

advanced monitoring solutions including anomaly detection.

On the other hand, adopting LAN networks could open the doors towards

insecure and public communication channels (i.e. the Internet) and required

adopting some security counter-measures, as the so called “air gap”. In an

air-gapped system, there is a physical separation between the internal (secure)

network and any other networks, as the Internet.

True isolation, however, is difficult nowadays due to the massive spread of

connectivity [65]. Moreover, taking advantage of most recent innovations in the

IT domain (as geographically distributed Virtual Private Networks, centralized

cloud infrastructures, Virtual Reality-based remote support, etc.) inevitably

requires to break the air gap.

Both vendors and industries have thus been forced to cope with this new

reality, and given also the constantly increasing security levels of modern public

networks, are progressively relaxing their air gapping policies, thus opening the

doors for data interoperability and new opportunities.

2.2.2 Data loggers

Data loggers are systems designed for the solely propose of logging data over

time. Usually small and easy to carry, before the digitization era, they were

mechanical devices keeping track of data by physical means. For example, a

disk rotating under an arm with a print head, which is sensible to the ambient

humidity, thus keeping track of it as the disc rotates over time.

As electronics progressed over the last decades of the 20th century, such

devices started to operate in a digital way. In this case, measurements from

one or more sensors are acquired using an ADC (Analog to Digital Converter)

driven by a computing element, and their data stored in an internal memory.

Digital data loggers can operate either connected to a power socket or using an

internal battery, and can have several channels performing the data acquisition

at different bit depths and sampling intervals.

Data acquired by digital data loggers was originally envisioned to be col-

lected manually: an operator had to either bring a computer close to the data

logger (or vice-versa) and connect it, or its internal memory had to be plugged

into a reading device (as a memory card reader).

22

Given that this operation was time-consuming and that any failure in the

acquisition process would go unnoticed until the dump of the data, in recent

times data loggers started to be equipped with various forms of connectivity,

thus enabling remote monitoring in real-time or near real-time.

2.2.3 Internet of Things

The term “Internet of Things” (IoT) was first used in 1999 by British tech-

nology pioneer Kevin Ashton to describe a system where objects of the physi-

cal world could be connected to the Internet using sensors [68]. In its original

statement [6], Ashton focused in particular on RFID (Radio Frequency IDen-

tification) tags, which allow to “sense” objects belonging to the physical world

by digital means.

Today, the term IoT encompass a wide range of technologies capable of

connecting various objects together, not necessarily using sensors. As with

every new trend, the term started to be adopted even where other, potentially

more well established terms were already in place, as for example Internet-

connected the SCADA systems and data loggers.

The modern Internet of Things can be thus everything and nothing: a

vending machine proposing discounts on some items because of a surplus in the

central warehouse, a fitness tracker connected to a mobile phone, the mobile

phone itself, but also a car, or a nuclear power plant.

Arising mainly from the consumer electronics domain, remote monitoring

IoT solutions started to overlap with the natural progress of SCADA systems

and data loggers, generating considerable confusion. Coining new terms along

the way, as IIoT (Industrial Internet of Things), did not help in the process.

In this context, it has to be said that, abuses aside, the IoT paradigm sees

the Internet as its core component, while similar technologies not directly using

the Internet were available even before. An example is the M2M (Machine-to-

machine) communication, which was “based on closed purpose–built networks

and proprietary or industry–specific standards, rather than on Internet Protocol

(IP)–based networks and Internet standards” [68].

The process of providing with connectivity SCADA systems and data log-

gers started thus long time before the IoT was born, by adopting this kind of

solutions. Moreover, moving towards a more standardized approach using a

public network as the Internet involves many challenges, as the need of more

advanced software functionalities and more powerful computing resources, and

most importantly, to properly implement security standards.

Adopting the Internet of Things without without properly enforcing the

security aspects can cause severe backfire should the system be compromised,

and in the context of critical systems its adoption has been rightfully slowed

down and delayed, to allow for the proper addressing of these concerns [53].

As of today, relevant progress has been made, and some critical systems are

already equipped with solutions that are technically IoT-based. However, they

are limited to use-cases where a system compromise would result in moderate

or contained damage.

23

2.3 Time series data

In the vast majority of cases, sensor-based critical systems operates on time

series data, which represents the evolution of the system over time. Not to

be confused with generic series data (as text strings) or signals (as an audio

waveform), time series have in their time component their main characteristic.

In other words, besides the sequential and time-dependent ordering, the specific

timestamp with respect to a given reference time system of each observation

carries important information as well.

Timestamps allow to compare (e.g. correlate) time series from different

sources, either acquired at different locations across the same system or from

exogenous origins, and to account for phenomena not directly dependent on

the system dynamic. Only a small portion of critical systems indeed operates

in isolated conditions, while for most of them environmental and human factors

are key parameters when modeling their behavior.

For example, an energy grid will be susceptible to daily patterns, seasonal-

ities and bank holidays; a wind farm to meteorological conditions, and a solar

farm to a combination of the time of the day and cloud coverage. Some of these

parameters can be inferred from the timestamps of the time series themselves,

as the time of the day and the bank holidays, while others, as the meteorological

conditions, require to compare different time series.

In both cases, it is important for the time component to be correctly cap-

tured and logged. Properly managing the time domain, including taking into

account peculiarities as time zones, daylight saving times and calendar arith-

metic is a key step for reliably processing sensor-based critical systems data.

An important step in this process is clock synchronization. In general, any

clock must be initialized with the correct time, and a good clock must also

not drift. The same holds true for SCADA systems, data loggers, and IoT

devices. However, many issues can arise in this context: some because of an

approximate initial configuration, others because of poor design choices that

use relative time instead of absolute time (and thus not allowing to keep track

of the timestamps in an effective way), while yet others because of the internal

quartz sensibility to temperature variations, power supply instability, or just

the aging of components.

In Internet-based systems, an effective way to overcome such issues and

achieve both accurate and persistent time synchronization is it to use the Net-

work Time Protocol (NTP), which is is used by hundreds of millions of comput-

ers and devices to synchronize their clocks over the Internet. Already widely

used in the IoT space, such approach is being progressively adopted also in

the context of SCADA systems and data loggers. In case of an air gap, other

methodologies can be used, as for example local time synchronisation services

or GPS-based time synchronization.

Time series can be in general univariate or multivariate. In univariate time

series (Figure 2.1), a single quantity is tracked along the time domain, while

in multivariate time series (Figure 2.2) quantities can range from two to an

arbitrary number.

24

Figure 2.1: Example of a simple univariate time series.

Multivariate time series usually include data from a single acquisition device

equipped with more than one sensor, but when there is a need of comparing

data from different sources, they can be merged in a single, multivariate time

series as well (Figure 2.3) .

Figure 2.2: Example of a multivariate time series by a single acquisition device.

Figure 2.3: Example of a multivariate time series by multiple acquisition devices

Time series can be processed in many ways, and a particularly interesting

approach is the so called “streaming mode”, where new observations are pro-

cessed as soon as they come in. In this case, an important consideration is

weather history should be allowed to be rewritten, or not.

Such aspect is relevant also in batch processing mode, where time series

are processed either as a whole or in smaller batches, but it is more central in

streaming mode since this is usually aimed at providing real-time or near real-

time insights. In case of out-of-order data transmission, a data point which

is received after a most recent one, and that is still processed, can cause to

contradict the insights previously delivered. For example, in energy consump-

25

tion tracking, the maximum peak power can be just overwritten by late-coming

observations.

Whether to accept such observations or not is a design choice, which has

pros and cons. On the pros side, none of the available data is lost. On the cons

side, streaming data processing (where out-of-order data just cannot fit) could

say one thing, while a batch (re)processing of the same data could say another.

Similarly to clock synchronization, also for streaming data processing a

proper design of the data acquisition process is fundamental for obtaining re-

liable time series data.

2.4 Anomaly detection

2.4.1 Role

The role of anomaly detection in critical systems is mainly related to avoid

costly failures. Broadly speaking, in sensor-based systems there are two main

classes of anomalies: sensor anomalies and system anomalies.

Sensor anomalies are related to malfunctions in the sensing hardware. Such

anomalies are the most frequent ones and are particularly relevant whenever one

or more actions are going to be undertaken based on the sensor readings (e.g. in

feedback loop systems), which can in turn lead to potential issues and damages.

Even when there are no actions to be undertaken, not detecting a sensor failure

in a timely fashion leads to acquiring garbage data for a potentially long period

of time, which can be an issue if collecting historical data, especially for ex-post

data analysis and regulatory compliance.

System anomalies are instead related to anomalies in the dynamics of the

system itself. These can be due to sub-optimal working conditions, early signs

of some component not working properly anymore, or because of a failure.

The order of importance is of course progressive, while the ease of detection

is inversely proportional: failures are relatively easy to spot, early warnings

are harder, and sub-optimal working conditions are the hardest, given their

closeness to the normal operational mode.

2.4.2 Challenges

The main challenge in implementing anomaly detection in the context of

critical systems lie in the reliability it requires. Since anomalies can trigger

high-priority operator responses or investigations, to the point of stopping op-

erations or waking someone up in the middle of the night, false positives are

very costly. On one hand because of the economic cost, and on the other,

perhaps most importantly, because they can cause operators to loose trust in

the anomaly detection process itself. Alerts for potential anomalies must be

therefore fired with an high level of confidence.

Unfortunately, the first issue to achieve this goal already arise when ac-

quiring, storing and processing the data, and undermines the main pillar on

which an anomaly detection process is to be built: the reliability of the data.

26

Many issues can affect this step, either because of poor design and architec-

tural choices (which are surprisingly common in the field) or intrinsic hardware

limitations and failures due to harsh operating conditions.

For example, storing the timestamps in local time instead of Coordinated

Universal Time (UTC), storing placeholder values (as 0 or -99) when a sen-

sor cannot be read, or sending data in an unordered fashion can very easily

generate false positives in anomaly detection. Data is also often sampled at

unsynchronized or irregular time steps because of missing hardware clocks syn-

chronization, intrinsic limitations (e.g. a single acquisition device that has to

sample many sensors in sequential mode), or because of retrying to read a

sensor that could not be correctly read after a short amount of time.

Because of this, a resampling step is almost always needed to make the

time steps uniform, which is required for nearly all modeling techniques for

time series data. During this step, data losses which naturally occur in such

systems must be taken into account, that can be particularly challenging if

using placeholder values in case of data acquisition errors. Even if assuming

that the missing data points can be correctly detected (either because they

are completely missing or because they are correctly marked as null values),

the resampling step will anyway assign a value to the data points created over

such gaps, usually by linear interpolation. If there is no metadata for the data

points, after the interpolation step it is impossible to distinguish between the

data points rightfully created by the resampling process and the data points

which were completely reconstructed.

If not properly handled, the resampling step can therefore easily lead to

the so called garbage-in garbage-out paradigm. Fitting or applying a model on

(potentially large) portions of fully interpolated data can indeed easily confuse

the model, and lead to completely unrealistic predictions, thus causing anomaly

alerts to trigger on anomalies that were just nonexistent.

Besides the challenges related to the data processing, there are also several

challenges within anomaly detection itself, which is a very noisy research field

and hard to navigate. One of the main sources of such noise is to approach

anomaly detection with how anomalies will look like already in mind, e.g. as a

supervised problem. However, truly relevant anomalies are yet unknown, and

targeting known anomalies is not much of use in detecting them. Supervised

anomaly detection would also require a balanced dataset between the normal

and anomalous data instances, which is clearly unfeasible unless adopting data

augmentation or synthetic data generation methodologies, which has several

implications to consider.

If instead not using the known anomalies to design, fit or train the the algo-

rithms involved in the anomaly detection process, (e.g. using a semi-supervised

or an unsupervised approach), it is common to use the few known anomalies as

an evaluation test bed. While widely accepted, this practice has an important

drawback almost never discussed, which is to heavily bias the selection towards

techniques that will perform well on known anomalies, but not necessarily on

unknown ones.

27

One of the (bold) arguments made in thesis thesis work is that most often

than not there are just not enough know anomalies to allow for a data-driven

evaluation, and that the focus should be instead directed towards designing

anomaly detection techniques that could be, at least partially, assessed or eval-

uated without knowing anything about the potential anomalies.

This is also particularly relevant for newly built critical systems, where

there is just no history of known anomalies, but where spotting yet completely

unknown ones has the same (if not more) value than on systems where some

historical anomalies are available.

Another challenge in implementing anomaly detection for critical systems

is to make it suitable for real-world scenarios. Many studies and techniques

are indeed limited to artificial ones, for example where the data is all already

collected and/or manually cleaned, there are no time constrains on detecting

the anomalies, or just make use of toy datasets, which in the time series domain

usually translates into detecting trivial anomalies on univariate time series.

For example, a recent article [49] published by the European Space Agency

in 2024, with respect to the potential of Machine Learning techniques for

anomaly detection in real-world satellite telemetry, states that the field “is

currently hampered by a lack of comprehensible benchmarks for multivariate

time series anomaly detection”.

Such article also enumerates the requirements for the ideal anomaly detec-

tion algorithm, which in the authors opinion does not exist yet, differentiating

the “shalls” (a mandatory feature) vs. the “shoulds” (a desirable feature). The

first “shall” states that such algorithm “shall provide a binary response (i.e. 0

– nominal, 1 – anomaly)”, and it also adds that: “It is not enough to provide

continuous anomaly scores to SOEs1, so a thresholding mechanism should be a

part of the algorithm. A clear boundary is needed to decide if something should

be alarmed to operators or not.”.

This requirement is however somewhat unrealistic if taken as-is. As it will be

extensively discussed in Chapter 3, anomalies are indeed an ill-defined concept,

and it is thus just impossible to provide a binary response whether a data

instance is anomalous or not. Moreover, a thresholding mechanism can cause

to miss anomalies slightly below the threshold, and does not allow to prioritize

operators’ response nor investigation, either in terms of urgency or in case of

two or more anomalies arising simultaneously. While this might not be a major

concern in the satellite operations domain, where there is a 24/7 control room,

this is not the case for most of critical systems, where operators have many

tasks and need to prioritize their activities and responses.

It is instead of paramount importance to provide a clear boundary to decide

if something should be alarmed to operators or not, as the authors say, rather

than providing just a meaningless (e.g. arbitrary or uncapped) anomaly score,

and this thesis work aim at addressing exactly this need. However, once the

alarm is triggered, to restrict the indication about the potential anomaly to

just a binary state is rather questionable.

1Spacecraft Operations Engineers.

28

The authors also put strong emphasis on the importance of not triggering

false positives, and clearly state how the false positives rate should be a key

metric for the successful application of anomaly detection in their context.

They state: “The highest priority aspect relates to the proper identification of

anomalous events, but with a strong emphasis on avoiding false alarms at the

same time”. They also add: “Again, it is of paramount important to avoid

false positives. It is strongly preferable to miss some channels rather than to

wrongly identify many irrelevant channels.”

Such reasoning on the false positives can be extended to any critical sys-

tem, and together with the need of providing a clear boundary to decide if

something should be alarmed to operators or not, it represents one of the main

requirements underpinning this thesis work.

Again with respect to the above mentioned article, the second “shall” states

that algorithms “shall allow for real-time, online, streaming detection”. The

term “real-time” implies to detect anomalies as soon as new data comes in,

without any lag. While this might be the case for spacecraft telemetry, such

requirement is too strict for the vast majority of critical systems, where a near

real-time approach might be sufficient, provided that the detection is performed

in a timely manner. What “timely” means, it then depends on the use-case.

The two main requirements for anomaly detection in critical systems, gen-

eralized to a variety of use-cases and including the considerations presented in

this section, can be therefore enumerated as follows:

1. to provide a clear, robust and reliable indication about the potential

anomalies and their degree of suspicion, and

2. to work in an online and streaming fashion, performing the detection in

a timely manner, usually in real-time or near real-time.

Addressing these two requirements generates a chain of sub-requirements

and sub-challenges, including how to define a meaningful anomaly scoring from

which to derive such clear indications, how to implement a robust methodology

to compute the scoring, how to properly handle data losses in particular with

respect to the streaming mode, and many more, which are all core aspects of

this thesis work.

29

Chapter 3

Anomaly detection

overview

The goal of this overview is to frame anomaly detection consistently, while

acknowledging its ill-defined nature and thus trying to ground the intrinsic

ambiguity it comes with.

Definitions, notions and techniques are supported by many references, and

in particular by four main reviews, selected as the best structured ones among

the large body of work on the topic: two on generic anomaly detection (Chan-

dola [15] and Pang [63]) and two specific on time series anomaly detection

(Cook [20] and Blaquez [10]).

3.1 Defining anomalies

3.1.1 A naturally ill-defined concept

Anomalies have been tried to be defined in many ways in scientific literature

over the past decades. Often used interchangeably with terms as “outliers”,

“rare events”, “novelties”, and more, such elusive concept has been defined in

ways such as:

• An outlying observation, or “outlier”, is one that appears to deviate

markedly from other members of the sample in which it occurs. (Grubbs,

1969) [32]

• An outlier is an observation which deviates so much from the other ob-

servations as to arouse suspicions that it was generated by a different

mechanism (Hawkins, 1980) [33]

• Anomalies or outliers are substantial variations from the norm (Mehro-

tra, 2020) [48]

• Anomalies, a.k.a. outliers, are data instances that significantly deviate

from the majority of data instances (Pang, 2021) [63]

30

• Anomalies are patterns in the data that do not conform to expected be-

havior (Chandola, 2009) [15]

• Anomalies are patterns in data that do not conform to a well defined

notion of normal behavior (Chandola, 2009) [15]

Before the seventies, most papers discussing outliers and related techniques

did not even bother to provide a definition. It was just considered a self-

explanatory term. At some point, authors started to feel the need of defining

what an outlier is, and as of today, the two most widely used definitions in

literature are the first two of the list above, by Grubbs and Hawkins, with a

shift towards the definition provided by Hawkins in recent research.

Grubbs refers to a generic “marked deviation”, while Hawkins adds more:

that such marked deviation cause to arise “suspicions that it was generated

by a different mechanism”, or in other words, that such observation is from a

different population. However, when an outlier is detected and the suspicion

arises, whether such deviating observation is generated by a different mecha-

nism or not is yet to be assessed, and all another story. Immediately following

his definition, Hawkins indeed writes:

“There are two basic mechanisms which give rise to samples which appear

to have outliers. It is a matter of some importance which of the mechanisms

generated any particular set of observations since this consideration certainly

affects, or should affect, one’s subsequent analysis of the data. Mechanism (i):

The data come from some heavy tailed distribution such as Student’s t. There

is no question that any observation is in any way erroneous. Mechanism (ii):

The data arise from two distributions. One of these, the ‘basic distribution’,

generates ‘good’ observations, while another, the ‘contaminating distribution’,

generates ‘contaminants’.”

In the context of anomaly detection, anomalies are clearly the “contami-

nants”, while “good’” observations are the main source of false positives. Dis-

cerning which between the two mechanisms is at the origin of the outliers was

central to the the discussion for a good portion of the 20th century, starting

with Irwin in 1925 with his paper titled “On a Criterion for the Rejection of

Outlying Observations”, and revisited by Grubbs in 1969 with his tutorial pa-

per “Procedures for Detecting Outlying Observations in Samples”, where he

wrote:

“An outlying observation may be merely an extreme manifestation of the

random variability inherent in the data. If this is true, the values should be

retained and processed in the same manner as the other observations in the

sample. On the other hand, an outlying observation may be the result of gross

deviation from prescribed experimental procedure or an error in calculating or

recording the numerical value. In such cases, it may be desirable to institute

an investigation to ascertain the reason for the aberrant value.

The core of outlier analysis (and not just detection) is thus about deciding

whether they should be considered as compatible with a statistical fluctuation,

31

or caused by a different mechanism. However, this aspect seems to have been

almost completely marginalized in modern research, where the main investi-

gation area is about the detection, while little effort is put on improving the

criteria for determining which of the two above options is more likely.

Outliers are often just implicitly considered as something “to avoid”, which

while it might work when performing statistical analysis where just removing

them is a viable (yet questionable) choice, it is instead counter-productive when

the target of the analysis are the outliers themselves.

Part of the problem is that the above mentioned criteria cannot be based

on pure mathematical assumptions, but they depend on many factors. Back in

1925, Irwin indeed wrote, with respect to how to set a threshold for deciding

whether to include or not an outlier in the analysis: “It is a matter of opinion

which the mathematician cannot settle, how small P (λ) must be before it is

justifiable to reject the observation”.

As of today, such question remains largely unanswered. In a way, we got

very good in detecting outliers, but we still fall short when it comes to deciding

what we should do with them: if to treat them as normal, or if they represent

an anomaly.

With respect to anomalies, when not used synonymously with outliers (and

section 3.1.2 will argument why this should not be the case), these are defined

in a broader sense, usually involving the concept of an “expected behavior”.

Interestingly enough, the last two definitions in the list at the top of this section

are used by the same authors within the same review. However, they convey

two very different concepts: the first refers to a generic “expected behavior”,

while the second to a “well-defined notion of normal behavior”.

While this seems a subtle difference, it actually has big implications. If

we talk about an “expected behavior”, then the question should arise quite

spontaneously: the expected behavior for who? If we instead have a “well

defined notion of normal behavior”, then we have much less ambiguity in the

definition of what is normal and what is not.

Again with respect to the last two definitions, they also bring into play

yet another concept: the pattern. Patterns implicitly require a structure or

relationship within the data to exist, while anomalies can be just single ob-

servations in a dataset where there are no structures or relationships at all: a

person 2.8 meters tall would clearly be an anomaly, no patterns involved.

These are just some examples of the confusion surrounding the terminology

in this field, and just the tip of the iceberg. Most research works and published

papers keep mixing and matching different concepts, definitions and terminol-

ogy, often taking for granted that other people working in the same domain

will implicitly assume the same meaning.

While this practice does not necessarily mean that such works are low qual-

ity, it does make the landscape quite hard to navigate, especially when it comes

to understand benefits and limitations of the various techniques.

32

3.1.2 Anomalies vs. outliers

Perhaps the most questionable habit is to use the terms “anomaly” and

“outlier” interchangeably. This thesis strongly argues that they should not be

used as synonyms, and that while they do overlap to some extent, they are two

very different concepts, whose relationship can be summarized as follows:

anomalies ≈ novelties ̸= outliers ≈ rare items (3.1)

Let’s start discussing the difference between anomalies and outliers with

a simple example: if we measure something multiple times, we know that

such measurements should follow a normal distribution. We will have most of

measurements close to the true value, some more spread ones, and then some

outliers corresponding to the tails of the distribution. Or at least, this is what

we expect.

Now, let’s assume that one day we find no outliers at all, regardless of

how many measurements we perform, and that each measurement always falls

extremely close to the previous ones. We would quickly state that there is

something anomalous going on, as for example an issue with the instrument or

the data processing. In other words, in this case it the absence of outliers to

indicate an anomaly, since we expected them.

(a) (b)

Figure 3.1: Example “normal” (a) and “anomalous” (b) measurements from an instrument.

Another example where using outliers and anomalies as synonyms fall short

is with data where the ordering plays a key role, as series and images. If we

look at the distribution of the gray scale color values on the two following white

noise images, this will be a uniform distribution with no outliers (given how the

images were generated). And one would likely never claim there are outliers in

the second image; instead, it is much more probable they would describe it as

an anomaly of some kind, probably in the disposition of the pixels. This would

be particularly true if the image on the left would be marked as the “normal”.

33

(a) (b)

Figure 3.2: Example “normal” (a) and “anomalous” (b) bi-dimensional white noise.

These two simple examples should be enough to make it clear that while

anomalies and outliers are deeply intertwined concepts, they should not be

used interchangeably. In other words, not all outliers are anomalies, and not

all anomalies are outliers. This thesis work will focus on anomalies, and not

on outliers.

3.1.3 What is normality, after all?

If we define anomalies as “something unexpected”, which is the approach

undertaken in this thesis work, we are then implicitly defining anomalies as a

complement to normality: what is normal is expected, and what is anomalous

it is not. This immediately raises a pretty deep philosophical question: what

is normality, after all?

As humans, we perceive our world trough models. From simply throwing a

ball and expecting it to follow a given trajectory, to expecting someone not to

be mad at us without a reason, or simply for a dice to be fair. Some of such

models can be defined in mathematical terms, others in behavioral science ones,

and yet other ones using statistics.

When ancient populations saw a solar eclipse, they did not have an expla-

nation for that: it was unexpected. So they started to perform various rituals

in order to make the sun shine again. Then, we were able to build a model of

the solar system, and solar eclipses became much more than expected: they

become predictable, and with great confidence.

If we go back to the example of people’s height, and we consider an (adult)

person 1.3 meters tall, as soon as biology found out that a mutation in the

FGFR3 gene caused the so called skeletal dyspepsia, dwarfism become ex-

plainable. And even predictable, thanks to DNA testing. Hopefully, no one

would call these persons anomalies nowadays (even if they are still outliers in

the data). If something, it is the mutation that can still be classified as an

anomaly, because its causes are not yet entirely clear. But not its effect, which

is instead fully predictable, and thus, expected.

This brings to a very hard truth about defining what is normal and what

is not in terms of “expected behavior”: if our models could explain anything,

34

then nothing would be anomalous anymore. We would just “expect” it, since we

would have an explanation for everything: our predictions will be always right.

Defining anomalies by complementing normality thus rely on the limitations of

our models, which we can turn to our own advantage to spot (yet) unexpected

behaviors.

However, a crucial part in this processes lie in where to put the boundary

between the expected and unexpected: is getting two ones in a row when rolling

a dice normal? Probably yes, we all know that it can happen and some board

games even have specific rules about it. Can we instead consider it normal to

get a series of a thousand ones? Most likely not, and it indicates an anomaly

somewhere (regardless whether the dice is loaded or there is a particularly

clever throwing mechanism that can control the outcome).

Any anomaly detection technique based on defining normality as the “ex-

pected behavior”, from simply using an if-then rule to training complex neural

networks, require to set such threshold somewhere, somehow.

For example, when looking for anomalies using an if-then rule, the thresh-

old is just a condition on an expected value. If an observation is above (or

below) such threshold, then it is considered as anomalous. But how should this

threshold value be set, and on which grounds?

When instead looking for anomalies using a model to make predictions

about the expected behavior, such threshold is usually the maximum acceptable

discrepancy between the predicted and observed values: normality is when the

discrepancy is still small, and anomalies start when it gets to big. But what

exactly do “still small” and “too big” mean?

Normality is thus a very subjective concept, than can be grounded only if

providing a reference rule or model to be considered as such (even in its more

abstract form), or a dataset from which to derive it. This can be then used in

turn to define the expected, the unexpected, and where the boundary between

the two lies.

3.2 Detecting anomalies

Anomaly detection can be approached in a number of ways and using many

techniques, which do not necessary depend on the approach chosen. In this

context, “approaches” has to be intended as the high-level framing of the prob-

lem, regardless of the specific techniques that will be used to implement it,

which will be discussed separately (in Section 3.2.2).

3.2.1 Approaches

Three main classes of approaches to anomaly detection have been identified

in this thesis: supervised, unsupervised and semi-supervised, depending on how

much prior knowledge they assume.

35

3.2.1.1 Supervised

The supervised approaches, which have to be intended in the broader mean-

ing of the term, address anomaly detection by already knowing what to look

for. This can assume different aspects based on the various techniques and how

they are used.

A first example of supervised anomaly detection are rule-based systems,

which can range from simple if-then statements to complex expert systems that

can code a variety of cases. In such systems, the notion of normality is pre-

defined based on domain experience. For example, in a combustion engine the

maximum expected temperature for the coolant is around 90 degrees Celsius,

which if implementing a rule-based system simply translates in marking higher

temperatures as anomalous.

In more complex scenarios involving a number of parameters, several con-

ditional statements are chained to cover all the possible combinations. Such

systems, known as expert systems, have several intrinsic limitations, but due to

their nature they are also completely transparent and thus the decision-making

process is fully explainable, which can be important in some domains.

In statistics, supervised approaches encompass any technique where a prior

threshold is set to differentiate normal and anomalous data instances. For ex-

ample, setting a cutoff on the data distribution, provided that such distribution

contains both normal and anomalous data instances.

Within the machine learning domain, in the supervised learning paradigm a

machine learns with input-output pairs: for a given input, the learning process

aims at finding a mapping to generate the expected output. In anomaly de-

tection, this requires to provide examples of both normal and anomalous data

instances, and therefore to already know how anomalies will look like.

The main advantage of supervised learning over rule-based systems and

statistical techniques is not being bound by a set of pre-defined rules written

by a human or a fixed algorithm: with the right framework and with enough

computing power, any problem that can be framed as a supervised learning

problem can be solved, and with great accuracy. However, the risk of supervised

learning is to learn too well how to pair the inputs and the outputs, thus

resulting in the so called over-fitting. This is particularly true when there is

not enough data to allow a model to generalize, which is exactly the case in

anomaly detection given that anomalies, if known, are rare. Cross validation

and other techniques1 can be used to combat over-fitting and to ensure selecting

a model that can generalize well, but always within a given set of input-output

pairs: how the model will respond to truly unseen data is completely unknown.

Besides the advantages and disadvantages of the various techniques, a su-

pervised approach to anomaly detection raises a fundamental question: can we

still talk about anomalies if we already know them? Or perhaps, assuming for

a moment that anomalies always imply bad or dangerous events (which is of

course not always the case), shouldn’t it be more appropriate to talk about

unwanted states?

1Synthetic data is a new trend being explored in situations of training data scarcity.

36

This observation is important since it question whether the supervised ap-

proach should be considered as capable of performing anomaly detection at all.

And again due to anomalies being ill-defined, it is not clear whether the answer

to should be a strict “yes”, a “no”, or if it should be up for discussion.

Many surveys and reviews on anomaly detection make similar considera-

tions on such shortcomings when it comes to the supervised learning approach

[20, 63], although usually without clarifying the terminology first, while some

of them entirely skip this approach altogether [10, 15].

In any case, if we agree upon Equation 3.1, then the answer is pretty

clear: any approach to anomaly detection targeting anomalies which are al-

ready known cannot be considered as capable of performing “real” anomaly

detection, since it will never be able to spot something “truly” unexpected.

3.2.1.2 Unsupervised

Unsupervised anomaly detection, or in other words anomaly detection with-

out any prior opinions about how the normal and anomalous data instances

should look like, is probably what we all ideally dream of. A magic algorithm

that, knowing anything about the data, automatically highlights anomalous

data points or patterns.

Such approach is however probably more of an utopia than a viable path,

and this is because when we think about it, we likely implicitly imagine an

advanced artificial intelligence taking the place of a human being, probably

ourselves, and in a domain we already know.

But this idea silently ignores that such human already has a notion of nor-

mality, and can thus easily identify what does not belong to it. Moreover,

it risks to be very subjective too: we have all been in a situation where we

told someone “I was not expecting this”, and the other person, possibly more

experienced than us, replied: “well no, this is actually normal”.

In statistics, an example of an unsupervised approach corresponds to avoid

setting any threshold on the data distribution which contains both normal and

potentially anomalous data instances. If a threshold is instead set, an opinion

is given, and we immediately fall back in the supervised approach.

Also in unsupervised machine learning, as soon as a threshold is somehow

set in order to separate normal and potentially anomalous data instances, then

an opinion is given, and the benefits of the unsupervised learning vanishes.

If we instead try to avoid introducing any thresholds or any other prior

opinion in order to separate normal and potentially anomalous data instances,

then we have no choice other than marking the most “suspicious” data points

as anomalous: we simply have no basis to exclude the possibility that such

data points are instead “normal”.

In other words, in truly unsupervised anomaly detection, in any dataset

there is at least one anomaly, by definition. This does not necessarily make

this class of approaches useless. They can be great tools for data quickly

investigating large amounts of data and pointing a human operator straight

to the most “interesting” parts. However, they cannot provide any actionable

37

insights without a domain expert in the loop validating their results as “real”

anomalies, based on an implicit and domain-specific notion of normality.

3.2.1.3 Semi-supervised

This class of approaches does not make any assumptions about anomalies,

but makes a strong assumption about what normal data looks like. To this

extent, a reference dataset validated as “expected behavior” is used to extrap-

olate such notion of normality, which is then used to spot any behavior not

belonging to it, which is thus anomalous, since “unexpected”.

Semi-supervised approaches work exclusively on such reference dataset,

which is used not only to capture the “normal” behavior, but also to set the

boundary between the expected and the unexpected, thus allowing to ground

such elusive concept as discussed in Section 3.1.3.

If we go back now to the example of the car coolant, re-framing it as a semi-

supervised anomaly detection approach entails acquiring a dataset of coolant

temperature over time, known to be the correct operating mode, then storing

the maximum temperature ever reached and marking any future temperature

above it as anomalous.

Even if very basic, this procedure perfectly match the semi-supervised ap-

proach to anomaly detection. The difference between doing exactly the same

but in a supervised way lie in how the threshold is set: if it is a human, or if

such rule is set automatically based on the data marked as normal.

Having an entire dataset marked as “normal” available opens the door for

implementing much more sophisticated techniques to capture the normal be-

havior rather than just setting a threshold. One could for example start looking

at the differences between subsequent data points, correlations between multi-

ple signals, discording sub-sequences, fit a statistical model, or train a neural

network capable of capturing complex nonlinear patterns, as will be extensively

discussed in the following under various points of view.

Lastly, it has to be noted that in the machine learning realm, the semi-

supervised approach to anomaly detection does translates 1:1 to the semi-

supervised mode, which is used with different meanings with respect to the

use-case. Standard usage refers indeed to the practice of using a small amount

of labeled data along with a large amount of unlabeled data to improve model

accuracy and generalization, while in anomaly detection based on machine

learning it changes the meaning to align with to the same practice described

here as semi-supervised.

3.2.2 Techniques

In this section, a number of techniques for performing anomaly detection

are discussed, with a primary focus on unsupervised and semi-supervised ap-

proaches. While the focus of this thesis work is on anomalies and not on

outliers, techniques which target anomalies as outliers have been included as

well, for completeness.

38

Each technique makes use of one or more scoring functions, whose output

can be either directly used to provide an estimate of how “anomalous” an

observation is, or compressed in a binary fashion (anomalous / not anomalous)

using a threshold. How to define the scoring functions and how to set the

thresholds (if any) are a crucial part of the anomaly detection process, which is

often underestimated and that will be explored further in Chapter 4. For the

extent of this overview, only common scoring functions will be reported.

The various techniques are divided in two main classes: analysis-based,

where the focus is on analyzing the data “as-is”, thus looking for data instances

that do not fit in the main pattern or distribution; and model-based, where a

model is used to make predictions about the expected behavior, which are then

compared with the observations in order to find any discrepancies.

3.2.2.1 Analysis-based

In their simpler forms, such techniques just look at how the data is dis-

tributed and make considerations about it, evaluating the distance between

one or more data points and the others in a given distance metric. Such dis-

tance can be computed either from a reference value for all the data points (e.g.

the mean value) or between relative values (e.g. groups, or clusters, of data

points). An example is to look for outliers in the bi-dimensional space consist-

ing of age and height using a given distribution and setting a 3σ threshold.

Extra features can be added to the data points as well, (e.g. the difference

with respect to the previous values in sequential data), which allows to accom-

modate for simple sequential or matrix data to some extent. For example, in

a series of temperature measurements, one might be interested not only in the

value, but also in how fast it changes, thus considering the first derivative.

Most of these techniques target outlier anomalies, with a few exceptions as

the series discords and the one-class SVM techniques. These take a slightly

more sophisticated approach than just considering how the data, or some of its

features, are distributed: the series discords look at common sequences, while

the one-class SVM make use of a higher-dimensional mapping in order to find

complex non-linear relationships.

Z-score

The simpler analysis-based technique is to consider the mean value of

the data and mark as anomalous any data point “too far” from it. The

scoring function is simply the z-score itself (the distance from the mean

value), and the threshold defining the concept of “too far” is usually set

to three or five standard deviations.

k-Nearest Neighbors (k-NN)

This technique evaluates the distance between a data point and its k-

nearest neighbors. The scoring function is the distance itself, which is

often cut at a given threshold, based on the distances of the other data

points, to differentiate normal and anomalous data points.

39

Density-based

This technique try to find the best probability density function according

to the data distribution, which can be in turn found in a number of ways

with probability density estimation techniques. These include choosing

the best fitting distribution within a set of candidate distributions, kernel

density estimation, discrete histograms, and more.

Once a distribution is selected, the scoring function is the the inverse

of the probability, which thus allow to mark data points falling in low

probability areas as anomalous.

K-means

This clustering technique tries do divide the space in n centroids. Any

data point that does not belong to any centroid is then considered as

anomalous.

The scoring function is usually the distance between a data point and

the nearest cluster centroids, but it can be also be seen as the dispersion

with respect to multiple centroids: if a data point is relatively close to

more than one centroids, it can then mean that such data point does not

really belong to any of them, and thus with a higher anomaly score than

if considering only the distance to the closer centroid. Another option

for defining an anomaly score (in unsupervised mode) could be instead to

evaluate how many elements each cluster has, in the sense that clusters

with few elements can identify a set of (similar) anomalies.

Isolation forest

Also know as iForest, this technique tries do divide the data points by cut-

ting the feature space, using random features, and based on the principle

that anomalies are harder to isolate with respect to other data points.

The scoring function is the number of cuts required to isolate a data

point: the more cuts are required, the more anomalous it is.

One-class SVM

This method tries to find a boundary around the data points mapping

the input data into a high-dimensional feature space using a kernel func-

tion. Given the usage of kernel functions, it can find complex non-linear

relationships within the data, but it only works with semi-supervised ap-

proach, since it has to be fitted on normal data instances in order to find

the boundary.

The scoring function is the (positive) distance between a data point and

the boundary, and the threshold to mark a data point as anomalous is in

this case zero (which corresponds to a data point on the border).

Series discords

The series discords technique, originally published in a paper by Keogh

in 2006 [45], targets the identification of the most uncommon sequence

40

in a series. Originally designed to work with an unsupervised approach,

it could be extended to work in semi-supervised mode as well.

The scoring function is how much sub sequences differ each other, in a

given distance metric.

3.2.2.2 Model-based

Model-based anomaly detection aims at spotting anomalies by considering

the discrepancies between the predictions of a given model and the observed

values. In this context, a model has to be intended as a generic mechanism of

estimating an unknown outcome based on some input data (and thus not only

predicting in the future, or forecasting). The anomaly score is usually just the

difference, in a given distance metric, between the prediction and the observed

values, although it can be greatly further evolved and improved.

Model-based anomaly techniques target anomalies as “something unex-

pected”, which, as introduced in Section 3.1.3, is the definition of anomalies

adopted in this thesis work. Since outliers can be unexpected too (but not

always), this class of techniques can detect them as well, and in a way, it is a

superset of analysis-based techniques.

However, unlike analysis-based techniques, model-based anomaly detection

works only when there is a mechanism, pattern or dynamic that can be captured

and modeled, thus effectively allowing to make predictions. This also implies

that the data must be suitable for the task: sequential data, matrix data, or

at least data carrying some context is required in order to provide the model

with the inputs it needs. Examples of suitable data include words of a text,

monthly sales, sensor measurements over time, an image, a 3D point cloud, but

also tabular data with more than one dimension.

One of the simpler ways of building a model is probably to just differentiate

observational data based on some parameters, which in turn become the input

of the model. For example, the average men height globally is around 171 cm,

but if parameterized with respect to the of European populations is instead

about 178 cm. If we add yet another parameter, as for example how the average

height changed over time, we can then ask out model to predict the average

height of a man in Europe in the seventeen century. In this case, the model is

a simple algorithm which allows to get a prediction based on two input values

(the continent and the year). Predicted values can be then compared with

observational data, and the mismatches marked as anomalies. For example,

in Montenegro the average men height in this century is around 183 cm, and

according to such simple model, an anomaly.

It is easy to see model-based anomaly detection and the definition of anoma-

lies as per equation 3.1 coming together smoothly in this simple example. Since

the model for predicting the average man height is solely based on the conti-

nent and the century, it just can not explain why Montenegro has such a taller

male population, which is thus unexpected, or an anomaly. If instead the

model would take into account also genetic characteristics and the diet of the

41

population (the factors believed to cause the higher average man height in

Montenegro), then such difference would be expected, and perfectly normal.

Lastly, it has to be noted that the specific type of model used to make

the predictions is not relevant when discussing this class of anomaly detection

techniques. Instead, it is the type of the model, how it is used, and how the

differences between the predicted and the observed values evaluated (and thus

which scoring function is applied) that are central to the discussion.

Given the focus of this thesis work on time series data, only regressive

models are considered in this section, which are grouped in three main classes:

forecasting models, contextual forecasting models, and reconstruction models,

which are discussed below.

Forecasting models

The most common technique in model-based anomaly in particular in the

time series domain is to use a model to predict future data, or in other

words to make a forecast. Such models can work by mapping the entire

time domain, and making a prediction for any timestamp (provided that

the the further the prediction will be moving away from the data on the

time axis, the less accurate it will be), or by using a moving window as

the input for the model, as schematically shown in Figure 3.3.

Figure 3.3: Visual representation of a window-based forecaster on a two-variable
time series (green dots for the first variable, blue dots for the second). The target
of the prediction are both variables (highlighted in yellow).

The forecasting horizon (how many data points in the future to predict)

can be set to virtually any value, given that even if the model does not

support forecasting the entire horizon in one go, it can always be fed

with the predicted data in a recursive way, thus supporting forecasting

horizons of arbitrary length2.

The forecast is the compared with the real observations, and a scoring

function applied. This is often just the average error, over the horizon, in

a given error metric as the absolute error or the relative absolute error.

Thresholds to separate normal and anomalous data points are usually set

manually or using simple statistics, as the standard deviation.

If using a forecasting horizon of a single data point, then this class of

models models can be applied in an online, streaming fashion, and even

2depending on how good the model is, a forecasting horizon too long usually leads to
convergence towards the mean value, and is thus not much of use.

42

in real-time if the circumstances allow for it (e.g. in terms computational

requirements). Anomalies can thus be detected as soon as new data

points come in.

One of the main advantage of using a forecaster, in particular with respect

to the semi-supervised approach, is that going forward along the time axis

they will progressively fed with input data already validated as “normal”

behavior by the previous runs, thus allowing to keep out-of-sample issues

under control.

Example of forecasting models include moving or periodic averages, dif-

ferential equations, linear regressions, auto-regressive models (as ARIMA,

GARCH), numerical models, support vector machines, neural networks,

and many more.

Contextual forecasting models

This technique adds some context to the model to help the prediction, or

in other words the forecast for a given value is made using other values

for the same timestamp, as schematically shown in Figure 3.3.

Figure 3.4: Visual representation of a window-based contextual forecaster on a
two-variable time series (green dots for the first variable, blue dots for the second).
The target of the prediction is in this case just the first variable (highlighted in
yellow), which make use of the second variable as well.

While the use-cases for this technique are limited when the goal is the

forecast itself, as for example when the target value takes some time

before becoming available, it is instead particularly useful for anomaly

detection, where the observed target values are always available. The

scoring function is the same as for the forecasting models.

One of the drawbacks of such technique, especially in semi-supervised

anomaly detection, is to use potentially anomalous data as input for

the model. For example, if looking for anomalies in a temperature and

humidity recordings, a faulty reading on the temperature might trigger a

false positive on the humidity. However, the anomaly would be correctly

detected when evaluating the temperature, thus limiting the issue only

in terms of ambiguity on where the anomaly actually is. Moreover, as

soon as more than two quantities are involved, this issue is less and less

relevant.

Example of contextual forecasting models include auto-regressive models

with exogenous variables (as ARIMAX), support vector machines, neural

43

networks, and in general any machine learning or deep learning model

where features can be properly set to include the contextual information.

Reconstruction models

Also known as imputation or inpainting (when referred to images), such

models aim to make a reconstruction that fit seamlessly within the sur-

rounding data. The key difference between forecasting and reconstruction

lies in the term “surrounding”: forecasters predict towards the unknown,

while reconstructors can anchor to other data. In sequential data, this

can be seen as filing a gap, where the data coming after the gap is known

and part of the input of the model as schematically shown in figure 3.5.

Figure 3.5: Visual representation of a window-based reconstruction model on a
two-variable time series (green dots for the first variable, blue dots for the second).
The target of the prediction are both variables (highlighted in yellow), using values
before and after the gap.

While at first reconstructing gaps instead of forecasting might seem more

powerful, it also implicitly assumes the reliability of the surrounding data,

which is not always true. In other words, if the surrounding data used

as input for the model is also anomalous, the model will either risk to

underestimate the anomaly, or worse, provide unpredictable results due

to the so called out-of-sample problem.

Moreover, evaluating such models (including model selection) is challeng-

ing: the size of the gaps is per-se a parameter, which in real reconstruction

tasks should be set by characterizing the data loss of the original (or ex-

pected) data. In anomaly detection, given that there are no real data

losses to reconstruct but that the data is reconstructed in order to be

then compared with the original data, the size of the gap can be chosen

freely, although it still has to to be properly tuned and taken into account

in the model evaluation.

Examples of reconstruction models include naive models as interpola-

tors and periodic averages, statistical models as ARIMA and GARCH,

and deep learning models as the Autoencoders or Generative Adversarial

Networks.

44

3.3 Evaluating anomalies

The last part of this chapter is dedicated to discussing how to evaluate if

the anomalies found by a given algorithm are “true” anomalies. Again due to

the ill-definition of the concept, this step is not straightforward at all.

A first answer to the question “is this a true anomaly?” could be simply

provided by stating that since the definition of anomaly is given by the algo-

rithm itself, anomalies are always “true”. This is particularly relevant for the

unsupervised approach, because of the observations made in Section 3.2.1.

However, this is course of little help for evaluating the performance of an

anomaly detection algorithm, whose goal, as framed in this thesis work, is to

detect unexpected behaviors. Perhaps, at the risk of sophistry, the question

could be rephrased as: “is this behavior truly unexpected?”

Such question can answered quite drastically if the system being monitored

fails as soon as the anomaly is identified: assuming that we (hopefully) did

not want this to happen, there is immediate evidence that that anomaly was,

indeed, “true”.

If instead the system did not fail, candidate anomalies have to be investi-

gated in order to understand if they were part of the normal dynamics of the

system (and thus should not have come unexpected, meaning that the algo-

rithm could not capture the notion of normality well) or if it instead they were

not (in which case they were true, although not catastrophic, anomalies).

In this context, a set of past known anomalies, spotted either by a human or

by the anomaly detection process itself, would seem to be useful in some way.

Indeed, while such anomalies will never be enough to approach anomaly detec-

tion as a supervised learning problem, as discussed in section 3.2.1, one could

decide to use them as a test dataset, where to benchmark a given technique.

This can work, but it is dangerous: test data, unlike validation data3, should

be used only once after the supposedly best model for the problem is chosen,

as clearly stated by Bishop in his renown book on Pattern Recognition and

Machine Learning [9]. To be noted that here, and in this entire section, “model”

has to be intended as the anomaly detection process in its entirety, regardless

of the technique chosen.

In the most strict approach, test data should be therefore kept secret when

selecting, fitting and validating a given model, and uncovered only at the end.

And most importantly, the results obtained on the test dataset should be never

used to tune, nor to choose, the model.

Given the lack of validation data for anomaly detection problems, the temp-

tation to use the test set to improve the model itself can be high, effectively

using it as a validation set which, given its limited size, will inevitably introduce

over-fitting (towards known anomalies) and thus potentially backfiring when it

comes to detect truly unseen anomalies.

Bishop indeed writes: “if the model design is iterated many times using a

3Some, including the author, find this way of wording counter-intuitive: it sounds more
natural to first test something and then validate it in real-world circumstances. However, to
avoid confusion, this thesis will stick with the widely accepted wording used by Bishop.

45

limited size dataset, then some over-fitting to the validation data can occur and

so it may be necessary to keep aside a third4 test set on which the performance

of the selected model is finally evaluated.”

Along similar lines, in his famous book “The Signal and the Noise”, Nate

Silver makes a pretty clear point when it comes to evaluate models used to

predict earthquakes on past data: “it is crucial to keep ‘retrodictions’ and

predictions separate; predicting the past is an oxymoron and obviously should

not be counted among success”.

This is not the entire story though, otherwise fields as machine learning

and deep learning would not exists at all, given that they are entirely based

on evaluating models on what Nate Silver calls “retrodictions”. But there is

a key difference: when a machine learning model is evaluated on the past,

there is enough data to ensure that “retordictions” are statistically reliable,

not over-fitted, and that can thus be used as predictions.

When it comes to detecting earthquakes, this assumption is just wrong:

there is not enough data to check whether a given model can correctly cap-

ture the signal over the noise in a statistically significant way and without

over-fitting it, and that can thus generalize enough to allow relying on its “re-

tordictions”. It’s no coincidence that the chapter where Nate Silver wrote the

quote above is titled “desperately seeking signal”, and in anomaly detection it

is exactly the same: there is just not enough data.

In any case, even if correctly using such small set of known anomalies as

a test set, or in other words without using it by any means to improve the

accuracy of the anomaly detection process, it would never be representative for

truly unexpected behaviors, and thus lead to misleading accuracy metrics.

Therefore, if approaching anomaly detection with genuine intellectual cu-

riosity, then a hard truth must be faced: anomaly detection techniques just

cannot be effectively evaluated.

4For Bishop, in this context, the first set he is implicitly referring to is the validation set,
and the second one the test set.

46

Chapter 4

Proposed methodological

framework

4.1 Design choices

In order to address the challenges outlined in Section 2.4.2, and the obser-

vations of the previous chapter, the methodological framework proposed in this

thesis work makes precise design choices.

These choices are based on optimizing the methodology for the various

requirements when evaluated as a whole, and for real-world scenarios, meaning

that are not inherently the best ones when evaluated as single entities.

Moreover, also the tradeoffs made are not necessarily the best possible ones,

given the huge amount of work required to properly optimize all of them given

the various constrains, and leaves room for improvement.

4.1.1 Data processing

Before discussing the data processing, it is worth mentioning also the data

acquisition step. While not necessarily in control when implementing an anomaly

detection process, there are still some important requirements on data acqui-

sition that should be fulfilled when possible.

The first and foremost of them is to acquire data with UTC (or epoch)

timestamps. Storing the timestamps in local format will inevitably cause issues

over Daylight Saving Time (DST) changes, and either cause to get duplicates

(when the clocks are moved backward) or gaps (when clocks are moved forward.

Data should also be never sent, or stored, in an unordered way. This can indeed

cause to feed the data processing system with newer data without any awareness

that past data has still to be waited for. Also, when possible, data acquisition

should be performed in a synchronized way, e.g. not at generic 60 seconds

intervals from the boot of the data acquisition device, but at the same moment

across all the data acquisition devices.

In case of a failure when reading a sensor, no placeholder numerical values

47

should be used (as zero or -99), but either no data should be generated, or

a null value used. Lastly, in case of a setting where the sampling rate can

change over time, it has to be kept track of each sampling rate change, either

as metadata of the data itself or separately, but it should be always possible to

reconstruct which sampling rate was in effect when.

Moving to data processing, the first step is the processioning, which usually

involves resampling the data (unless it is acquired at synchronized time steps,

as mentioned in the previous paragraph). Assuming that the design choices

about the data acquisition are usually not in control by who then implements

the anomaly detection, this step has also the role to fix all the potential issues.

It can include a buffer to handle unordered data, heuristics to detect sampling

rate changes, translating time stamps from local times to UTC and handling

the intrinsic ambiguity when the DST changes backward to prevent duplicates,

as well as computing the data loss. The data loss in particular is of paramount

importance for anomaly detection, as it prevent to fit or apply a given technique

on potential artifacts.

The resampling step, when generating the sample for the time t, must wait

for a sample coming after (or exactly at) the the timestamp t + 1. There is

no way to remove such lag (unless acquiring data in a synchronised way): the

resampler has just not enough visibility on the forthcoming data to generate

a value for the timestamp t, let alone to mark as lost the sample. When

generating the value for the timestamp t, the data loss has to be computed

according to the underlying data. Intuitively speaking, a sample generated

right before a gap in the data will have a data loss of about 50% (given than

the only reliable data points are on its left), while samples in the middle will

have a data loss of 100% (meaning that they are fully interpolated). The data

loss must be stored together with the values of the data points, or allow for

quick and simple lookup.

Lastly, any parameter estimation or inference must be paused when data

losses are detected, according to a thresholding mechanism. This is particu-

larly relevant when fitting a predictive model or when computing the anomaly

detection parameters, given that it could undermine the entire anomaly detec-

tion process, but also when performing the anomaly detection itself, as it can

easily generate false positives due to the garbage-in garbage-out paradigm.

4.1.2 Anomaly detection

As per Section 3.2.1.1, a supervised approach to anomaly detection would

introduce too much rigidity, and most importantly to already know at least

some of the anomalies, which in particular with respect to newly built or newly

monitored critical systems it is rarely the case.

An unsupervised approach would instead trigger many alerts, since in such

mode it is not possible to set any threshold, and require a human in the loop

as discussed in Section 3.2.1.2. In particular with respect to critical systems,

where anomalies can trigger potentially urgent alerts in an automated way in

order to preserve the operations, this is not a viable approach.

48

The choice was thus to employ the semi-supervised approach, which is also

particularly suitable for critical systems because of the commissioning period,

where the system is closely monitored by domain experts in order to ensure

it operates smoothly. Such period can naturally generate a reference dataset

for the “normal” operating mode, given that in case there were any issues

or anomalies these are usually promptly spotted and reported and thus easy

to exclude form such dataset. Moreover, the semi-supervised approach is the

only one that allows to remove most of the ambiguity about the definition of

anomalies.

The technique chosen to perform the anomaly detection is the model-based

technique. This choice was made, together with the semi-supervised approach,

for a number of reasons.

First of all, when it comes to time series data, models are naturally suitable

for capturing patterns, which with other, analysis-based techniques are harder

to take into account. One of the few exceptions is the series discords technique,

which can find the most unusual sub-sequences in sequential data. While this

technique was originally designed to work with an unsupervised approach in

mind, and for univariate time series, it is possible to extend it to make it work

in semi-supervised mode and for multivariate time series. However, it does not

allow to work without a lag time, as it requires for a sequence to be complete

before it can be compared with the other ones. It also requires to compare

any new sequence with all the others, a procedure which, even if the authors

prove that can be greatly optimized with respect to the brute force approach,

can still be computationally very expensive, in particular when working in a

streaming and online setting.

In second place, unlike other anomaly detection techniques, using a model

allows to incorporate valuable prior domain knowledge, and most importantly,

to obtain an indirect (yet precious) evaluation of the anomaly detection ef-

fectiveness. Intuitively speaking, a model capturing well the dynamic of the

underlying system will also translate in more effective anomaly detection, while

a model performing poorly will not provide particularly good results.

Lastly, evaluating the error distribution of a model in “normal” conditions

allows to make probabilistic considerations about it, and thus to assert in a

more confident way whether a new observation is compatible with such model

(and thus “normal”) or not (and thus “anomalous”).

With respect to the class of models to use, forecasting (or contextual fore-

casting) models are a natural choice given the requirement of evaluating new

data in an online and streaming fashion. However, there is also another and

more subtle argument in support of choosing forecasting models over other

ones. If a model is fed with data other than the from the past (which has

thus been already evaluated for anomalies), then there is no guarantee that

such data would not be already anomalous, which can in turn cause to either

underestimate the anomalies, or worse, to get get unpredictable results due

to the out-of-sample issue. When designing a framework for robust anomaly

detection, this is an important advantage.

49

Within the various forecasting models, the choice is to use those relying only

on a portion of the data to make predictions, or in other words using a moving

window. This is particularly important because it allows the same model to

be used repeatedly on the incoming data without any retraining or updating.

Constantly retraining or updating a model is indeed not a viable path not only

because of the heavy computational and input/output activity, but also because

when working in a semi-supervised approach it would be counter-productive: a

model constantly adapting to the new observations would progressively deviate

from the validated notion of normality, which is exactly what has to be avoided.

With respect to the forecasting horizon, the choice is to work with single

step-ahead predictions. This is mainly because anomalies are required to be

detected as soon as possible, but there are other reasons including to prevent the

propagation of errors and to allow a simpler modeling of the error distribution.

Moreover, there is no evidence that a multi step-ahead prediction would work

better in the context of anomaly detection. In any case, when a longer lag

time can be accepted, and a multi step-ahead prediction proved to be more

suitable, the framework proposed here can be extended to compare predicted

and observed sequences rather than just punctual predictions and observations,

and it is part of the themes envisioned as future work.

The scoring of anomalies must be simple and intuitive, and allow for clearly

assessing the degree of suspicion of a potential anomaly. Most research works

do not focus on this aspect, and for model-base anomaly detection a typical

choice is to just use the error between the predicted and observed values, which

carry little information about what a given score actually means. Moreover, it

does not allow to compare indications from anomaly scores generated by differ-

ent models, which is instead important when developing a robust methodology

since it allows working with ensemble models, that can greatly help in improv-

ing the overall anomaly detection capabilities.

In order to better quantify the degree of suspicion for a new observation of

being anomalous, and to allow comparing the outputs from different models,

this thesis work introduces a new anomaly score, called the anomaly index.

Such index, which will be introduced in the next section, is based on the prob-

ability of a new observation to be compatible with a given model of normality,

and can range from zero (not an anomaly) to one (almost surely an anomaly).

How to set such boundaries is a key step that will be covered in the fol-

lowing section as well, partly answering the question Irwin posed back in 1925:

while it is true that how to set P (λ), or any other threshold, to differentiate

between normal and anomalous data instances is a “matter of opinion that the

mathematician cannot settle”, it is also true that in semi-supervised anomaly

detection there is an important difference: we are cheating, or in other words

we already know what normality is supposed to look like.

50

4.2 The anomaly index

Given how challenging it is to quantify the degree of suspicion for a new

observation to be anomalous, a considerable effort in this thesis work has been

spent on this topic. While most research work focus indeed on improving the

anomaly detection techniques, which as argued in section 3.3 can also risk to

translate in a task just serving its own sake, little work has been carried out

on how to use, nor present, their results.

Usually, anomaly scores are just distance metrics: from a neighbour, from

a cluster, from a boundary, or between the predicted and observed values.

However, this approach has two main limitations: it makes it hard to interpret

the scoring, and it does not allow to compare the outcome of different models.

For this reasons, this thesis work proposes a new anomaly score for model-

based anomaly detection, based on how much a given observation can be con-

sidered as incompatible with a given model of normality.

Such score was designed to overcome the two limitations mentioned above,

providing a clear interpretation while ranging from zero to one in order to allow

for an easy comparison, and named anomaly index.

4.2.1 Formal definition

In model-based anomaly detection, given a predicted value p and an ob-

served value o, one could immediately define an anomaly score s by just com-

puting the distance between the predicted and actual value:

s1 = |p− o| (4.1)

Depending on the use case, a slight improvement is to consider the magni-

tude of these values with respect to the data, typically using a relative error

form:

s2 =

∣∣∣∣ (p− o)

o

∣∣∣∣ (4.2)

In general, given an error metric E, this could just be used as-is to define

an anomaly score:

s = E(p, o) (4.3)

However, defining a score in such way, which is a common choice for most

of the works found in literature, has to main issues:

1. it has no probabilistic interpretation nor meaning, and

2. it does not allow to compare anomaly indications originating by different

models, either on the same or different datasets.

The first point is of paramount importance when anomalies must trigger

actions in the real world, because as already introduced in section 2.4.2 a scoring

51

method that cannot provide a clear indication about the degree of suspicion of

potential anomalies is of little practical use.

The second is instead simply essential for any use case involving more than

a single univariate time series, let alone using ensemble models: comparing

different anomaly indications is a key step for any anomaly detection process

dealing with anything slightly more complex than toy problems.

To overcome such limitations, we can consider the error distribution and

use it to evaluate how likely it is for a given error between a predicted value p

and and observation o to occur. More in detail, we consider:

• a dataset D with data items o1, o2, o3, ..., on, also refereed to as the ob-

served values;

• a model M capable of making a prediction p for an observed value o, and

in particular making predictions p1, p2, p3, ..., pn for each oi in D;

• an error metric E to compute the error e(o, p) between predicted and

observed values, applied to all the pairs oi and pi; and

• a unimodal distribution function f(e) fitted on all the prediction errors

e(oi, pi), as a normal or generalized normal distribution (Figure 4.1).

Figure 4.1: An example (normal) distribution function f fitted on the errors of a given model.

We then define the adherence of a generic, and potentially new, observed

value o to the model M with respect to the dataset D as:

h(o, p) =
f(e(o, p))

max(f)
(4.4)

where p is the prediction the model made for the value o. Or simply:

h(e) =
f(e)

max(f)
(4.5)

52

The values of such quantity span the 0-1 range given how it is defined

(Figure 4.2), and if we consider its complement to one (1 − h), we obtain the

inverse concept: an indication of how much an observation o is not adherent

to our model M , with respect to the dataset D.

Figure 4.2: The adherence defined according to equation 4.5 plotted with respect to the
example (normal) distribution of Figure 4.1.

At this point, one could be tempted to assign a meaning in terms of abnor-

mality to the quantity 1− h as-is: the lower the adherence to the model gets,

the more we suspect an anomaly.

While on the right path, this is not particularly useful for two reasons.

First, we cannot declare a suspicion of anomaly as soon as an observation

starts deviating from the model, which has an intrinsic error that cannot be

neglected: the above mentioned quantity would indeed assign a suspicion of

anomaly greater than zero to any observation, even when the error is very

low. In particular with respect to the semi-supervised approach, where the

maximum error committed by the model on the normal data is still to be

considered as perfectly normal, this is not a viable choice. Second, given that

this quantity would approach 1 asymptotically, but never reach it, it would

never allow to state if a given observation is to be considered as not adherent

with the model, and thus an anomaly, in a clear way.

Instead, we need boundaries: where to start getting suspicious about a given

error (and consequentially the observation that generated it), and where to stop

being just suspicious and instead assert that we are (almost) certainly we are

facing an anomaly. How to set such boundaries will be discussed in the next

section; for the time being, let’s just assume that they are set somehow, and

let’s name them hstart and hend. Figure 4.3 shows a visual representation of

this concept, together with the errors associated with the respective adherence

boundaries.

53

Figure 4.3: Visual representation of the adherence boundaries hstart and hend and the
associated errors.

Once the lower and upper boundaries hstart and hend are identified, we can

proceed by rescaling the adherence of a given observation with respect to the

adherence at such boundaries, using the following formula (which rescales the

adherence values within the boundaries in the 0-1 range):

h̃(e) =
h(e)− hend

hstart − hend
(4.6)

As before, we can consider its complement to one 1− h̃, which still represents

how much an observation o does not adhere to the model M with respect to

the dataset D, but within the adherence boundaries we set.

We can therefore proceed in formulating the overall expression for a possible

anomaly index j based on such considerations:

j(h) =


0 for h ≤ hstart

1− h̃ for hstart < h < hend

1 for h ≥ hend

(4.7)

However, an index defined in this way would do a poor job in differentiating

anomalies based on their order of magnitude, which is important when evalu-

ating them and deciding how to react. The boundary values in the example of

Figure 4.3 are indeed quite fictional, and a more realistic scenario would look

more something like Figure 4.4.

A logarithmic scale would be therefore much more suitable, as it can bee

seen, again visually, in figure 4.5.

54

Figure 4.4: Visual representation of the adherence boundaries hstart and hend and the
associated errors in a more realistic scenario than Figure 4.3.

Figure 4.5: Visual representation of the adherence boundaries hstart and hend and the
associated errors on a logarithmic scale.

With a few trivial considerations, it is easy to see that the following equation

holds true:

1− h̃ = 1− h− hend

hstart − hend
=

h− hstart

hend − hstart
(4.8)

This allows to rewrite the expression 4.7 as:

55

j(h) =


0 for h ≤ hstart

h− hstart

hend − hstart
for hstart < h < hend

1 for h ≥ hend

(4.9)

On such expression, it is easy to apply a logarithmic transformation, which

leads to the final form of the anomaly index i:

i(h) =


0 for h ≤ hstart

log(h)− log(hstart)

log(hend)− log(hstart)
for hstart < h < hend

1 for h ≥ hend

(4.10)

It can also be noted that in this expression all the adherences h can be

replaced with just the error distribution function f , given that the dividend

of equation 4.5 cancels out, thus allowing to express the anomaly index as a

function of the error (and its distribution) only:

i(e) =


0 for e ≤ estart
log(f(e))− log(f(estart))

log(f(eend))− log(f(estart))
for estart < e < eend

1 for e ≥ eend

(4.11)

where e = E(o, p), and estart and eend are the boundaries in terms of the error,

to be set either directly or obtained by reversing equation 4.5.

This makes the anomaly index particularly convenient to manipulate and

implement, although defining the boundaries in terms of the error requires

assuming a symmetric distribution, or to split the cases between the right and

left parts of the distribution.

Lastly, in case of models predicting multiple quantities, one could extend

this reasoning to the n-dimensional case; or simply handle it with separated

indexes.

4.2.2 Setting boundaries

How to set the boundaries of the anomaly index is a key step, given that

they represent where to start getting suspicious about a prediction error (and

consequentially the observation that generated it), and where to stop being

just suspicious and instead assert that there is (almost) certainly an anomaly.

In the unsupervised approach, such boundaries does not leave much room

for discussion. As already explained in section 3.2.1, in this approach the

only reasonable choice is to consider the most “isolated” data point as surely

56

anomalous, which in model-based anomaly detection translates in the bigger

prediction error. The upper boundary would then be set to such value, while

the lower one to any value where the suspicion is considered to be worth in-

vestigating, as for example when committing a prediction error above a three

sigma cutoff.

In the semi-supervised approach instead, errors up to the maximum error

committed by the model on the normal data have to be considered as still

perfectly normal. Above such error, our suspicion about observing an error

generated by another mechanism rather than by an extreme manifestation start

to arise, and keep arising up to a point where we stop just being suspicious and

where we assert that such error is (almost) surely due to another mechanism,

or in other words, an anomaly.

Such threshold can be set in many ways depending on many factors, and

it is part of what a mathematician cannot settle, citing again Irwin. Some of

these ways include:

• using a somewhat intuitive yet opinionated value (e.g. the double of the

maximum error);

• using an extremely low value (e.g. 1/1020, 1/1030);

• making some considerations about the maximum rate of false positives

that can be tolerated, in a backward manner.

The plots if Figure 4.6 show how the anomaly index looks like in an example

case, using two different upper boundaries (1/1010 and 1/1030). If using the

first, an error twice as the maximum error committed by the model on the

normal dataset would be marked with an anomaly index of 1, while if using

the second, it would be marked with an anomaly index of about 0.4.

It usually should be more desirable to set a very low probability boundary

(as the in the second case) for the upper value, and rather put a threshold on

the index itself to decide whether to fire an alarm or not, so that the magnitude

of anomalies are compressed only when extremely unlikely.

It can also be useful to use the few known anomalies, or artificially created

anomalies, to tune such boundary, which is perfectly legit. One could for

example add to the data an anomaly corresponding to a complete failure (e.g.

a value dropping near zero) and check whether the chosen upper boundary

would mark it with a reasonable anomaly index.

It is also interesting to see how powerful it is to rely on a given notion of

normality when it comes to fit an error distribution. While it is true that the

famous threshold the mathematician cannot settle is always something to deal

with, it is also true that in the semi-supervised approach to anomaly detection

we are using a precious hint: we know how normality looks like.

The following two error distributions were fit form the prediction errors of

a simple linear regression model, which was in turn fitted on almost the same

dataset (a simple univariate time series of air temperature). Such datasets,

about two months long, differed for just two days: in the first dataset there

57

(a) (b)

Figure 4.6: The anomaly index plotted for an example model and dataset, using as lower
boundary the maximum error (3.8) and as upper boundary a probability to obtain an error
greater than the boundary of 1 in 1010 (a) and of 1 in 1030 (b).

was only data acquired in the normal operational mode, while in the second

there was an anomaly (whose characteristics are now not relevant).

(a) (b)

Figure 4.7: Error distributions on just “normal” data (a) and on both “normal” and “anoma-
lous” data (b).

Some of their parameters change significantly, and the p-value changes dras-

tically between the two, as reported in table 4.1. And it makes perfect sense,

given that the error introduced by such anomaly is from another distribution.

beta loc scale p-value

Distribution a 1.55 -0.0067 0.21 0.112

Distribution b 1.31 -0.0051 0.19 0.008

Table 4.1: Parameters of a generalised normal error distribution fitted on the prediction
errors of a model fitted on just “normal” data (distribution a) and on both “normal” and
“anomalous” data (distribution b).

58

4.2.3 Error metrics

In the previous section, we used a generic error metric E(p, o). However, the

error metric to be chosen for the anomaly detection process is a key element,

given that any subsequent consideration stems from its choice.

Many error metrics exists to chose from, and in literature there are various

attempts to define more and more meaningful error metrics.

Error metrics can be either scale-dependent or scale-independent, subject to

whether they evaluate the differences between the predicted and actual values

in a way that is dependent to the scale of values involved, or not. Usually,

scale-independent error metrics are also referred to as just “relative”. The

most common error metrics are briefly summarized in the following.

Error (E): the simpler error metric, which computes the signed distance be-

tween a predicted and observed value, in a scale-dependent way:

E(o, p) = o− p (4.12)

Squared Error (SE): a square operation is applied on the difference between

the observed and predicted values:

SE(o, p) = (o− p)2 (4.13)

Logarithmic Error (LE) in this case a logarithmic transformation is applied

bot to the predicted and observed values:

LE(o, p) = log(o)− log(p) (4.14)

Relative Error (RE): it divides the difference between the observed and pre-

dicted values by the observed (or predicted) value:

RE(o, p) =
o− p

o
(4.15)

Percentage Error (PE): this is just the relative error multiplied by a fac-

tor of 100, and it is common to refer to relative or percentage error metrics

interchangeably. Formally, it is defined as:

PE(o, p) =
o− p

o
· 100 (4.16)

Each of the above metrics can be also defined in their absolute counterparts

to obtain only positive values (except for the SE which is already positive-

defined), by just applying the absolute value operation and pre-pending an

“A” (for Absolute) in their acronyms: AE, ALE, ARE, APE. In such case,

the anomaly index defined in section 4.2.1 it is required to consider only the

positive side of the domain.

In order to get instead an error metric capable of taking into account multi-

ple observer-predicted pairs, usually an average operation is added on positive-

defined metrics, which is customarily denoted with the letter M. So the APE

59

becomes the MAPE (Mean Absolute Percentage Error), the AE becomes the

MAE, and the SE becomes the MSE (Mean Squared Error).

Other operations could then be applied, as for example the square root,

which if applied on the MSE brings to the RMSE (Root Mean Squared Error).

The focus within this section is however on punctual error metrics instead

aggregated ones, so these are no further explored.

The choice of which metric to use depends on the dataset and the context,

the first decision key being whether adopting a scale-dependent error metric

or not. For example, in an energy grid it is likely better to use a error metric,

given that bigger errors are symptoms of bigger amounts of energy involved,

and thus of more substantial consequences. In monitoring the temperature of

a machine instead, there ins nothing inherently worse in making an error when

the temperature is high than when it is low (again depending on the context).

Other considerations can involve the definition domain, stability, and fair

weighting. For example, scale-independent (or relative) error metrics that per-

form a division by either the observed or predicted values are not defined when

the dividend is zero, which might not suitable for many use cases (e.g. a

temperature that can be either positive or negative). Similarly, such metrics

are unstable around a zero value of the dividend, given that little fluctuations

translates to extremely big ratios.

With respect to weighting instead, a good error metric should equally pe-

nalize under-estimations and over-estimations, while most of scale-independent

error metrics as the ARE and APE does not. For example, in case of over-

estimating the observed value by a factor of ten, the APE has a value of 900%,

while in case of under-estimating it by the same factor, the APE has a value

of just 90%.

Some attempts have been carried out in order to overcome such issues,

however they usually just lead to complicating things [31] without providing

tangible benefits. While such approaches tried to define a generic go-to default

indeed, in real-world circumstances the choice of the error metric ultimately

solely depends on the dataset and the context.

4.3 Candidate models

This section describes a set of forecasting models that can be mixed and

matched for model-based anomaly detection within the framework proposed in

this thesis, together with their advantages and disadvantages.

It has to be noted that some well known models for time series forecasting

are not suitable and thus have not been included in this set. For example, most

statistical methods such as ARIMA and its derivatives1, GARCH, Exponential

Smoothing, Facebook Prophet [81], etc. cannot be applied in an online fashion:

they require continuity of the data to be forecasted with respect to the fit data,

meaning that accounting for new data requires to re-fit the model on the entire

dataset, which is just unfeasible.

1Such as SARIMA, ARIMAX, and VARIMA.

60

More classical numerical models are also not included, although might be

technically suitable. However, such models are usually domain-specific, require

a-priori calibration and are computationally heavy.

The forecasting models presented in this section are classified in four main

categories, based on their complexity, the assumptions they make about the

underlying data and their abstraction capabilities. Such categories are: naive,

statistical, machine learning and deep learning.

4.3.1 Naive

Naive method are, as the name suggest, extremely simple methodologies

often used as benchmark or when there are severe constrains on the computing

resources.

Feed forward The simpler technique to perform a forecast is just to assume

that the latest value is the best approximation for the future one. While

of limited predictive power, it can set a solid baseline for evaluating other

forecasting methods, and in the context of anomaly detection can easily

spot unexpected spikes or discontinuities at nearly no computational cost.

Moving average This method takes the average of the values over a window

of n item in order to forecast the next value. It smooths out short-term

fluctuations and highlights longer-term trends. Also inexpensive in terms

of computational power, in the context of anomaly detection it can be

useful to detect increasing noise levels or faster changes than usual in the

dynamic of a signal.

4.3.2 Statistical

Statistical methods are more complex than the naive, being built on prob-

ability theory and hypothesis testing, usually in order to understanding rela-

tionships between variables.

Periodic average This technique requires a periodic signal, and it simply

computes the average value for each part of the period (e.g. hourly the

average temperature for each hour of the day). The average value can

be used as-is, weighted with respect to the contextual conditions, as the

offset of the previous n periodic averages. Such a simple model can make

surprisingly accurate predictions on simple periodic signals (as the air

temperature), which together with its extremely low computational foot-

print it makes it a great model for experimenting.

Seasonal Decomposition This class of techniques evolves further the con-

cept of a periodic average by taking into account more complex dynamics,

or in other words to model more than just a single periodicity. Such tech-

niques are commonly used to account for (as the name suggest) seasonal

changes in the trend (e.g. gas consumption in winter vs in summer).

61

4.3.3 Machine learning

Machine Learning (ML) methods aim at learning how to optimize a given

function (usually called the loss) based on the data, and do not make any

assumptions on the underlying structure (unlike statistical and naive method).

However, they still make assumptions about the features of such data.

Linear regression This method models the relationship between a dependent

variable and one or more independent variables, and in particular it learns

a linear relationship from historical data that best fits the patterns. Pre-

dictions are then obtained by extending the learned relationship in the

future (or by providing as input the future values of the independent

variables).

SVM Support Vector Machines (SVM) are used for forecasting by fitting a

hyperplane that minimizes the prediction error. It’s particularly useful

for capturing non-linear relationships in time series, but can be compu-

tationally intensive and sensitive to parameter tuning.

GBM Gradient Boosting Machines (GBM) and other boosting methods like

GBM, XGBoost, LightGBM, and CatBoost are highly effective for fore-

casting, as they iteratively train trees to reduce errors. They excel with

non-linear, complex relationships and are quite popular in time series

forecasting applications.

4.3.4 Deep learning

Deep Learning (DL) models do not make assumption about the features on

the underlying data, unlike ML models, and are the most flexible solutions. DL

are a subset od ML, given that they are also based on learning how to optimize

a loss function. They are mainly based on Artificial Neural Networks (ANNs),

or just Neural Networks, (NNs), which mimic brain neurons.

Many neural network architectures exist for modeling time series data. The

main ones can be divided in five classes, based on the state of the art: RNN,

LSTM, GRU, TCN and Transformer-based, which are summarized in the fol-

lowing list.

RNN Recurrent Neural Networks (RNNs) are particularly useful for sequence

data, such as time series, because they retain a memory of previous in-

puts, allowing them to capture temporal patterns. While not explicitly

designed for long-term dependencies, they can handle certain temporal

dynamics effectively.

LSTM. Long Short-Term Memory (LSTM) neural networks are a specialized

version of RNNs that make use of an internal memory cell structure. This

allows them to effectively remember relevant information over longer time

intervals, making them better suited for capturing long-term dependen-

cies in time series data.

62

GRU. Gated Recurrent Unit (GRU) neural networks are similar to LSTMs

but use fewer gates, making them simpler and faster to train while still

handling long-term dependencies well.

TCN. Temporal Convolutional (TCN) neural networks make use of causal

convolutions to process time series data in a parallel fashion. Thanks to

this approach, they do not suffer from the same vanishing gradient issues

as RNNs and LSTMs, and are more efficient.

Transformer-based. First introduced in 2017, Transformer-based neural net-

works [85] make use of a self-attention mechanism that allows them to

capture relationships between any time step, and not only in a linear way

as all the above architectures. This ability to model long-range depen-

dencies without relying on sequential processing makes them particularly

well-suited for time series data.

4.4 Model selection

4.4.1 General considerations

Selecting the best model for a given task is a wide topic which involves

several use-case dependent variables. The first and foremost is the accuracy, but

also the performance (to be intended as the required computational resources)

can be a driving factor towards choosing a given model over another. Other

factors can include stability with respect to out of sample data, contained

maximum errors, explainability, and so on.

With respect to model-based anomaly detection, the two main factors to

consider beyond the average accuracy are the maximum error and the goodness

of the fit of its distribution, since in the approach proposed in this thesis work

it will be used to draw considerations about new observations.

Moreover, in particular in the domain of critical systems, performance is

somewhat secondary, given the high stakes involved.

4.4.2 Fitness function

When evaluating a candidate forecasting model for model-based anomaly

detection, and in particular when making considerations about its error, there

are three main quantities to keep under control:

1. the aggregated error, which provides an indication of the quality of the

model on average;

2. the maximum error, given that we are more interested in models that

make a limited error in the worse cases, even if less accurate on average,

rather than models that are very accurate on average but that can make

potentially very large errors; and

63

3. the goodness of the fit of the error distribution, given that if the error

cannot be modeled then it cannot be used to drawn conclusion (as the

anomaly index does).

In order to combine such requirements, a common strategy is to define a

fitness function to describe how fit is a given model for a given task, that can

be in turn used to assess how suitable it is for the task, using a single metric.

Any of the metrics listed in section can be used fo the first two points,

while for the third a common choice is to use the p-value of the fit, where

the null hypothesis of the test is that the data is originating from the chosen

distribution. The aim in this context is thus to look for high p-values, or at

least p-values that do not lead to rejecting the null hypotheses (according to

the usual threshold of 0.05).

Unfortunately, the p-value suffers from sensitivity to the sample size, and

even tiny deviations from the assumed distribution can result in extremely

small p-values [52]. Therefore, in real-world cases where the reference dataset

to be used for assessing the normality can be composed by thousands of data

points, the p-value is perhaps not the best choice.

Within the alternative solutions for evaluating the goodness of fit, a par-

ticularly interesting one is the Akaike Information Criterion (AIC), which is

based on the maximum likelihood of the model parameters and on a penalty

term proportional to the number of the parameters to be estimated. The AIC

is thus a relative measure, with no direct probabilistic interpretation, and is

defined as:

AIC = −2log(L) + 2k (4.17)

where k is the number of parameters of the model and L the likelihood. In-

tuitively speaking, the likelihood indicates the relative plausibility of differ-

ent parameters given the observed data, and for a set of observations X =

{X1, X2, . . . , Xn} and given a parameter vector θ, it is defined as:

L(θ|X) =

n∏
i=1

P (Xi|θ) (4.18)

where P (Xi|θ) is the probability (or probability density) of observing each Xi

given the parameters θ. For example, in the case of a normal distribution with

mean µ and variance σ2, the formula for the likelihood becomes:

L(µ, σ2|X) =

n∏
i=1

1√
2πσ2

exp

(
− (Xi − µ)2

2σ2

)
(4.19)

The goodness of the error distribution fit can therefore be assessed, in a

relative way across various candidate error distributions using the AIC, or,

when the distribution is fixed, just using the likelihood.

64

In order to asses how fit a model is for the data, given all the of the three

quantities introduced at the beginning on this section, these have to be com-

bined somehow. If choosing The APE, MaxAPE and AIC, we are therefore

looking for fitness function in the form:

fitness = f(APE, MaxAPE, AIC) (4.20)

given that higher fitness values have to be intend as better.

While combining such quantities is a relative simple step for the average

and maximum error, the AIC is on an arbitrary scale and can assume virtually

any value. For this reason, it has to be scaled somehow, and bought in the same

scale of the average and maximum errors, for example dividing it by a reference

value suitable for the use-case. A concrete example of a fitness function in case

of adopting the APE, MaxAPE and AIC with a reference value AIC ref is

given by:

fitness = −(MAPE +MaxAPE +AIC/AIFref) (4.21)

or, if looking for some more meaningful numbers:

fitness =
(1−MAPE) + (1−MaxAPE) + (1−AIC/AIFref)

3
(4.22)

4.4.3 Hyperparameter optimization

Hyperparameters are those parameters, specifically in the context of ML

and DL, which have to be set before the learning starts. With respect to

neural networks, hyperparameters include the learning rate, the batch size, the

number of epochs, regularization parameters and perhaps most importantly the

type and number of layers and their characteristics, as the number of neurons.

Since such parameters cannot be learned during the training, they have to

be set manually. The process of refining their choice and tuning their values in

order to get more and more accurate predictions is referred to as hyperparameter

optimization.

Many techniques exists for hyperparameter optimization, ranging from sim-

ple “brute force” approaches to more sophisticated ones, which are briefly de-

scribed in the following.

Grid Search: hyperparameters are searched enumerating any possible choice

of their combinations.

Random Search: instead of testing every combinations, only a subset of them

is tested, chosen randomly.

Bayesian Optimization: a probabilistic model of the objective function is

built, assuming a continuous search space.

65

Gradient-based Optimization: if the hyperparameters are differentiable,

then the gradient descend algorithm can be used to adjust them based

on how the loss changes.

Evolutionary/Genetic Algorithms: a first set of models is created using

random values fo the hyperparameters, which is then evolved simulating

biological natural selection by assessing the survival rate with a fitness

function.

While any of the above methods are suitable for hyperparameter optimiza-

tion, methodologies that make some informed decisions as the Bayesian or

gradient-based optimization and the evolutionary algorithms are to be pre-

ferred when possible, since they converge faster.

4.5 Benchmarking

As introduced in section 3.3, anomaly detection techniques cannot be ef-

fectively evaluated because of the intrinsic novelties that anomalies represent.

This is a key limitation in defining an experimental validation setup. Never-

theless, some benchmarks for anomaly detection have been released, which can

provide, to some degree, and indication about how algorithms can perform on

known anomalies, and in a given ground truth.

4.5.1 Available benchmarks and common flaws

As of today, there are just a few publicly available benchmarks for time

series anomaly detection, which are summarized in the following. Most of

benchmarking toolkits are based on a combination of these well-known bench-

marks [64, 86], or make use, possibly alongside such benchmarks, of generative

approaches to generate synthetic data on the fly [87].

NASA [42] United State’s National Aeronautics and Space Administration

released two public datasets for anomaly detection on time series: SMAP

(Soil Moisture Active Passive satellite) and MSL (Mars Science Labo-

ratory rover). These are dataset with various quantities as radiation,

temperature, power, computational activities, etc.

OMNI [78] This benchmark builds on top NASA’s SMAP and MSL bench-

marks and introduces the SMD (Server Machine Dataset) benchmark,

a 5-week-long dataset in the IT domain collected from a large Internet

company.

NAB [1] The Numenta Anomlay Benchmark is a diverse collection of data,

primary focused on the IT domain. It includes server data, advertisement

clicking rates, and social media trends; but also transportation data and

a few air temperature examples. It provides some synthetic data as well.

66

Yahoo [60] This is a benchmark in the IT domain which contains a mixture

of real and synthetic data. It is based on the performance metrics of

various Yahoo services.

UCR [88] The University of California Riverside anomaly benchmark is a di-

verse benchmark mainly based on human medicine and biology data, with

a small fraction of the data in meteorology and industry domains. The

benchmark slightly changes the angle of anomaly detection benchmark-

ing, framing it as a localization problem rather than as a real detection

problem: for any time series in the test dataset, it is known that it con-

tains exactly one anomaly.

Exathon [43] This is a benchmark for high-dimensional time series (i.e. mul-

tivariate with thousands of dimensions) in the IT operations domain,

which has been systematically constructed based on real data traces from

repeated executions of large-scale jobs on an computing cluster.

ESA The European Space Agency anomaly detection benchmark is an ex-

tensive benchmark in the satellite telemetry domain. It presents several

challenges, as high dimensionality and volume (years of recordings from

up to thousands of channels per satellite), a complex network of depen-

dencies between channels, complex characteristics (e.g. varying sampling

frequencies, data gaps and losses, trend and concept drifts), and noise and

measurement errors due to the influence of the space environment. The

benchmark also distinguish between “rare nominal events” and anoma-

lies, with the intention to let algorithms learn from such rare events in

the training data, which should not then be flagged as anomalies.

Most of these benchmarks share being heavily flawed, as explained by the

authors of the article titled “Current Time Series Anomaly Detection Bench-

marks are Flawed and are Creating the Illusion of Progress” [88] mentioned in

the introduction of this thesis work. In such article, the authors classify the

flaws in four main categories:

1. Triviality Trivial anomalies are defined as anomalies that can be found by

a single line of code, using only “primitives” as mean, max, std, diff etc.

For example, a data point with a value much bigger than the others, or

a signal dropping to zero.

2. Unrealistic anomaly density This happens when there are either: too

many anomalies in the data, contiguous regions marked as single multiple

anomalies, or anomalies extremely close each other.

3. Mislabeled ground truth Given that anomalies are an ill-defined con-

cept, there can many ground truths, but when a benchmark assumes

one, then labeling of the anomalies should be consistent. Mislabeling of

anomalies can affect both false positives and false negatives rates, thus

invalidating the results.

67

4. Run-to-failure bias This is when the dataset includes the data after a

failure. This causes both an unrealistic anomaly density and introduces

a bias in terms of anomalies being more likely towards the end of the

data. Moreover, including the data after a failure in an anomaly detection

benchmark is just an unrealistic setting: once a failure occurs, anomaly

detection is not relevant anymore, and metrics computed on such portion

of the data are not much informative.

In addition to these flaws, other flaws have been identified in the context

of this thesis work, and in particular with respect to sensors-based critical

systems. These are numerated below, continuing the list:

5. Only uni-variate data While on one hand it is more challenging to detect

anomalies in uni-variate data because of the limited informative power

they carry, on the other, how to handle the multiple information sources

that multi-variate time series provide, and how to combine the multiple

“hints” of potential anomalies, are yet other challenges and should be

included in a benchmark.

6. Improper timestamp handling This is when the timestamps are not

properly recorded, or when they are completely missing, thus treating

time series data just as generic sequential data. In any time series de-

pending on human activity, earth rotation, or its orbit (thus causing

daily or seasonal patterns), the timestamp is fundamental in the model-

ing process. Moreover, properly handling the time zone is of paramount

importance, given that otherwise it might cause a one-hour offsetting at

each daylight saving time change.

7. No data losses If the benchmarking dataset has no data losses at all,

which is hardly the case in all sensor-based systems, then it is not much

representative for such systems. Data losses can easily mislead algorithms

and lead to several false positives, and should therefore be present in the

benchmarks to test how a given methodology or technique would work in

a real-world scenario.

8. Mainly artificial anomalies This is when most of the anomalies are arti-

ficial, i.e. created by a human which modifies the data. Artificial anoma-

lies have limited representative power with respect to real-world anoma-

lies, and inevitably include the bias of the person who created them.

Moreover, if the shape of the anomalies is already known, then it would

perhaps more interesting to consider a supervised approach, possibly us-

ing data augmentation.

9. Binary anomaly identification The common practice in benchmarking

anomalies is to use a binary approach: data instances are marked either

as entirely anomalous, or as entirely not. This approach has several

downsides: first of all, it indirectly makes the threshold setting one of the

main parameter which gets benchmarked. Secondly, anomalies that get

68

“almost” detect are dismissed, thus leading to scenarios where a simple

threshold adjustment might overturn the benchmarking results. Third,

it does not allow to test how good is a given algorithm to assign different

magnitude levels to the potential anomalies, a key requirement in several

scenarios as introduced in Section 2.4.2. Therefore, it would be highly

desirable for a benchmark to includes at least some magnitude classes

(small anomaly, medium anomaly, and large anomaly), if not a continuous

anomaly ranking.

All of the benchmarks presented above show one ore more of these flaws,

the mapping being summarized in table 4.2.

Critical
Flaws (1-4)

Additional
Flaws (5-9)

Requires
real-time

Includes
sensor data

NASA 1, 2, 3, 4 uninvestigated no yes

OMNI 1, 2 uninvestigated yes yes

NAB 1, 2, 3 uninvestigated yes yes

Yahoo 1, 3, 4 uninvestigated no no

Exathon 1, 2 uninvestigated no no

UCR none 5, 6, 7, 8, 9 no yes

ESA none 9 yes yes

Table 4.2: Common flaws of time series anomaly detection benchmarks.

Flaws 1-4 identified by the authors in [88] are so critical that their rec-

ommendation is to completely abandon the NASA, OMNI, NAB, and Yahoo

benchmarks. The authors state: “As we have demonstrated, they are irre-

trievably flawed, and almost certainly impossible to fix, now that we are several

years past their creation. Moreover, existing papers that evaluate or compare

algorithms primarily or exclusively on these datasets should be discounted (or,

ideally reevaluated on new challenging datasets).”

Based on these indications, many works are practically irrelevant, includ-

ing one of the most comprehensive and recent studies which evaluates several

anomaly detection techniques [71].

The UCR benchmark was released by the same authors, with the aim of

addressing the flaws they found. The authors place a strong emphasis on

the UCR benchmark not being designed to solve them entirely, but rather to

mitigate them. However, in the context of this thesis work, also the UCR

benchmark appears to have several flaws, as reported in table 4.2.

Moreover, the UCR benchmark frames the anomaly detection problem as

a localization problem rather than as a real detection: the benchmark asks,

knowing that there is exactly one anomaly for each time series, to locate it

within a given margin. This benchmark thus does not exactly address real-

world scenarios, where the main question is if an anomaly is present or not.

69

The UCR benchmark also does not require to work in real-time: all of the

data can be processed together in order to spot where the anomaly is. While

this is surely interesting for ex-post analysis as data mining applications and

medical exams evaluation, it is of little value in the context of critical systems,

where the anomalies must be detected timely, without any information about

future data. The UCR benchmark is thus implicitly assuming an unsupervised-

like approach to anomaly detection, where, as explained in section 3.2, for each

dataset there is at least one anomaly, by definition.

The ESA benchmark is instead nearly flawless, except form the binary

anomaly identification, which is however somewhat secondary. The 87-page

article presenting the ESA benchmark also indirectly reinforces the importance

of flaws 5-8, clearly stating how their data presents all of these challenges.

Unfortunately, while the ESA benchmarks is far the most suitable one if

following the benchmarking route, it was released only in the summer of 2024,

towards the very end of this thesis work. Given the complexity and the tech-

nical challenges it presents, it was not possible to just plug-in the proposed

methodology, and indeed the authors openly state that they consider their

benchmark as “a starting point for the development of better algorithms for

satellite telemetry anomaly detection”. In a way, the ESA benchmark opens a

new chapter of anomaly detection in critical systems.

4.5.2 Micro-benchmarking results

Given the critical flaws of most of the time series anomaly detection bench-

marks as presented in the previous section, and the impossibility of using the

ESA benchmark, the compromise made in this thesis was to test the proposed

methodology on a subset of the UCR benchmark. However, it has to be kept in

mind that such benchmark address a different problem (localization of anoma-

lies rather than real detection), and without any real-time constrains.

One of the main pillars of the proposed methodology is to rely on prop-

erly modeling the normal data, thus domain knowledge is essential. In the

UCR benchmark, as the authors state, “the distribution across the domains is

highly imbalanced with around 64% of the times series being collected in human

medicine applications, 22% in biology, 9% in industry and 5% being air tem-

perature measurements”. This translated in leaving out most of the data, and

in particular all of the data in human medicine (mainly electrocardiogram and

respiratory data) and biology (mainly insects EPG2 and biomechanics force

plate and tilt table data), since no experts in these domains where involved.

Moreover, electrocardiogram (ECG) and respiratory data blur the line be-

tween signals and time series, which are defined, at least in this thesis work,

as a sequence of data over time where the specific timestamp with respect to a

given reference time system of each observation carries important information

as well (Section 2.3). In ECG data, the timestamp does not carry any infor-

mation if not for the sequential dependency: there is no time reference system

2Electrical Penetration Graph

70

nor the need to know when the ECG was acquired. With the same logic, also

an audio file would be a time series.

Also the concept of “real-time” gets blurry in this context: on signals which

are sampled in the range of 250 Hz to 1000 Hz, as for ECG and respiratory

data, an anomaly can be detected with a delay of hundreds of samples and still

be considered as a real-time detection (or at least, as near real time). In case

of telemetry data recorded every few minutes or hours, as for the majority of

critical systems, this is just not the case. Most of anomaly detection techniques

for ECG data do not rely on forecasting indeed, but rather on reconstruction,

using hundreds of samples simultaneously, if not the entire signal.

Along the same lines, the UCR benchmark allows for a 100-sample tolerance

in detecting the anomalies. While for ECG and respiratory data this translates

to a fraction of a second, for data sampled at one-hour intervals it translates

instead to 100 hours. This shows yet another flaw of the UCR benchmark: on

the data sampled at one-hour intervals which is part of the benchmark, as it

will be shown in moment, an anomaly detected more than four days later (or

earlier) it is still classified as correctly detected.

After discarding data in the medicine and biology domains, only two types

of data were then left: in the industry domain, which is mainly power demand,

and the air temperature data. Again due to the strong bias of this bench-

mark towards ECG and respiratory-like data, there are no timestamps at all,

nor information about the sampling interval. In order to inspect the data for

power demand and air temperature, the sampling interval was quickly reverse-

engineered and discovered to be in nearly all cases of one hour. Figures 4.9 and

4.8 show an example fo the “normal” data for the power demand data and the

air temperature data.

Figure 4.8: Air temperature “normal” data of the UCR benchmark.

If visually inspecting the power demand data, a spike clearly stands out,

towards the end of the time series. This is zoomed in Figure 4.10, where it

can be seen that it occurred exactly on the year change. It is hard to believe

that this not due to a data acquisition or processing issue, but regardless of the

root cause, this should definitely count as an anomaly, while the UCR dataset

states that the “normal” data can be assumed free from anomalies.

Moreover, power demand has a strong dependency on “human” time, and

modeling this kind of data without any information about the hour of the day,

the day of the week, or if a day is a bank holiday or not, it is just unrealistic.

71

Figure 4.9: Power demand “normal” data of the UCR benchmark.

Figure 4.10: Power demand “normal” data of the UCR benchmark, zoomed on the first part.

Figure 4.11: Power demand “normal” data of the UCR benchmark, zoomed on the first part.

Figure 4.12: Power demand “test” data of the UCR benchmark, zoomed on one of the
anomalies marked by the authors (highlighted in blue).

72

At this point, the power demand data was considered to be flawed enough

to be discarded, and the anomalies marked by the authors inspected, out of

curiosity. Interestingly enough, one of them just removes a day from a week,

as it can be clearly seen in Figure 4.12, where the anomaly marked by the

authors is highlighted in blue. There are several conceptual issues with this

“anomaly”. First of all, the anomaly is the day being removed, therefore it

would technically not even be possible to represent it. If the authors marked

the day after the day being removed, then why not marking the day before,

or both? Or, why not marking the entire week? In second place, this kind of

pattern (a week with four days) already presented itself at the beginning of the

“normal” data because of Epiphany, so it is unclear how a model (or a even a

human) should be able to capture the difference: the day removed could have

easily been four days after, on a Sunday, and both statements would be correct.

Lastly, all the data after the anomaly is shifted by one day, therefore also an

algorithm marking the entire time series as anomalous after the missing day

could be right. On top of these issues, such anomaly is of little interest for

real-world scenarios, where potential data acquisition issues are handled with

simple conditional checks and where timestamps are handled correctly, so that a

day does not just “disappear”. In summary, this is yet another example about

all the potential pitfalls that can arise in benchmarking anomaly detection

techniques, and why domain knowledge is essential.

The only data left is then the air temperature data, which comprises 13

time series (and 13 anomalies), an thus constitutes the micro-benchmark on

which the proposed methodology has been tested.

Three forecasting models have been trained, all based on a LSTM neural

network, to compute and then applied computing the discrepancies between

the predicted and actual values, which were then in turn used to compute the

anomaly index as per Section 4.2.1. The first model was setup to predict the

next data point using a previous window of data, the while the second and the

third were setup to have some samples of the last part of the window removed

(respectively, two and four), in order to prevent the model to adapt too much

on new patterns.

Only the data values, without the timestamps, were used for the models,

as per benchmark specifications. The error metric of choice for evaluating the

discrepancies between the predicted and actual values was chosen as the Per-

centage Error (PE), because air temperature errors should be scale-invariant.

Hyperparameters (just the number of neurons and the window length in this

case) have been optimized with a simple grid search, choosing the best trade-off

between the Mean Absolute Percentage Error (MAPE), the Maximum Absolute

Percentage Error (MaxAPE), and the AIC (as introduced in Section 4.4).

Since the benchmark does not require to asses the presence of anomalies but

instead to identify the location of the bigger anomaly, the problem was framed

similarly to an unsupervised anomaly detection problem. The anomaly index

lower bound was then set to 3 standard deviations, and the upper bound to an

adherence value of 1/109, following the reasoning presented in Section 4.2.2.

73

The anomaly indexes originating by the different models were then merged

using the maximum value, and grouped into events with a tolerance of a single

point gap (that is, if two anomaly events were separated by a gap of a single

data point, they were merged together), where the event magnitude was defined

by the average value of the anomaly index across the entire event.

Anomalies were then counted as correctly identified only if the bigger anomaly

event was overlapping the anomaly marked by the authors, thus without the

100-sample tolerance, which as previously explained would not make much

sense on such data.

Figure 4.13: Example results on the air temperature data of the UCR benchmark with
anomaly index breakdown on a per-model basis. LSTM0 is the model using the entire
widow, while LSTM2 and LSTM4 are the models which had, respectively, two and four
samples removed from the last part of the window.

Of the 13 anomalies, 8 were correctly identified, leading to an accuracy of

0.61. An example of an anomaly correctly detected is shown in Figure 4.13,

together with the anomaly index breakdown on a per-model basis. Recent state

of the art benchmarking results on the entire UCR dataset [51] report accuracy

of 0.71 (TimeVQVAE-AD), with a second place accuracy of 0.51 (Matrix Profile

STUMPY) and third of 0.47 (MDI). The top ten performing techniques on the

entire UCR dataset are reported in Table 4.3.

Given that the excluded data could have been potentially much more chal-

lenging, the TimeVQVAE-AD accuracy was re-evaluated only on the air tem-

perature data, using the original published results. This showed an increase in

the accuracy, that raised to 0.84, whch is directly comparable to the accuracy

of 0.64 obtained by the proposed methodology (Table 4.4).

An accuracy below state of the art was expected, given the different nature

of the benchmark with respect to the use-case that the proposed methodology

aims to address. It has indeed to be remarked that the techniques reported in

Tables 4.3 and 4.4 do not work in real-time, but have visibility of the entire time

series, including the data after the anomaly. The comparison is thus inherently

unfair with respect to the proposed methodology.

On the other hand, and bearing in mind the limited informative power of

this micro-benchmark, it still seems to fall in the same ballpark as the best

performing ones.

74

Technique Accuracy Data

TimeVQVAE-AD 0.71 entire dataset

Matrix Profile STUMPY 0.51 entire dataset

MDI 0.47 entire dataset

Matrix Profile SCRIMP 0.41 entire dataset

RCF 0.39 entire dataset

IF 0.38 entire dataset

Convolutional AE 0.35 entire dataset

SR-CNN 0.30 entire dataset

USAD 0.28 entire dataset

AE 0.28 entire dataset

Table 4.3: Benchmarking results on the UCR anomaly detection dataset.

Technique Accuracy Data

TimeVQVAE-AD 0.84 air temperature

Proposed methodology 0.61 air temperature

Table 4.4: Mmicro-benchmarking results on the UCR anomaly detection dataset.

75

Chapter 5

The Timeseria software

library

Timeseria is an object-oriented time series processing library implemented

in Python, which aims at making it easier to manipulate time series data and

to build statistical and machine learning models on top of it.

Unlike common data analysis frameworks, it builds up from well defined

and reusable logical units (objects), which can be easily combined together in

order to ensure a high level of consistency.

Thanks to this approach, Timeseria can address by design several non-

trivial issues often underestimated, such as handling data losses, non-uniform

sampling rates, differences between aggregated data and punctual observations,

time zones, daylight saving times, and more.

Timeseria comes with a comprehensive set of base data structures, common

data manipulation operations, and extensible models for data reconstruction,

forecasting and anomaly detection. It also integrates a powerful plotting engine

capable of handling even millions of data points.

5.1 Motivation and significance

Time series are central to several fields across many disciplines, such as

engineering, meteorology, medicine, environmental science, finance, economics,

and more. Time series represent the evolution of a phenomena over time, and

their analysis is essential to capture the dynamics of the phenomena being

studied, understand cause-and-effect relationships, and make predictions.

However, a typical time series processing pipeline — loading a dataset,

cleaning and plotting it, performing some operations, applying some models

and inspecting the results — still feels unnecessarily cumbersome. Scientists,

engineers, analysts, and many other professionals spend a considerable amount

of time on repetitive tasks and on getting their code to work, instead of focusing

on their core analysis.

76

Current numerical and data analysis frameworks indeed fall short in han-

dling everyday practical challenges when it come to time series data, and per-

haps most importantly, in real-world scenarios.

In a recent review [75] that surveyed 40 time series processing packages,

within the 17 listed as capable of handling missing data, upon closer investi-

gation it can be seen that none of them provides a robust solution, but more

of a set of workarounds. Similarly, among the packages listed as capable of

performing modeling tasks, checking for data consistency is always left to the

user.

It is also important to note the general lack of definitions regarding what

constitutes time series data, and how to represent it [16]. This is partly because

each format has it own advantages and disadvantages, and partly because the

complexity of such data is often underestimated.

Simple vector or matrix data structures are usually the default choice, un-

til discovering at later stages that are just not capable of taking into account

most of the typical time series characteristics: data losses are represented am-

biguously, calendar arithmetic and daylight saving times are handled poorly,

there is no support for variable sampling rates and no clear distinction between

punctual observations and aggregated data.

In this context, the usual solution is a series of patches stuck together

which eventually backfires, and very few attempts have been made to get the

fundamentals right. The TSflex [84] package, which focuses on time-series

preeprocessing and feature extraction, is one of such rare examples.

Timeseria represent an effort towards this goal: it is designed using a novel,

object-oriented approach for representing time series data, which can address

most of the issues outlined above.

5.2 Related work

Within the large body of work on libraries, tools, and frameworks for data

processing suitable for time series data, we selected the most relevant ones

with respect to Timeseria. The key criterion was their usability as building

blocks (i.e., as a library), which excluded, among others, GUI (Graphical User

Interface) applications, web-based solutions, and closed-source software.

One of such examples is Wolfram Mathematica, a commercial (and closed-

source) software solution originally developed for symbolic computation, which

provides several functionalities for time series data. Although these function-

alities could, in principle, be compared to Timeseria’s, the comparison would

be challenging on both sides, given their different nature, goals, and target

audiences, as discussed in a GitHub issue opened on Timeseria’s repository1

Also the R [21] software, which is instead open source, provides function-

alities for time series processing that could be compared to Timeseria’s. In

particular, R provides the ts function, which allows to create and manipulate

time series objects. In this case as well, a direct comparison would be difficult,

1https://github.com/sarusso/Timeseria/issues/40

77

in particular because R is designed for interactive analysis and data visualiza-

tion, lacking the general-purpose features and ecosystem support provided by

other languages, which severely limits its usability as a building block for other

software.

In addition, several domain-specific tools are available, often provided in the

form of GUI or Web-based applications. Some examples include MaD GUI [62]

(a tool for creating GUI interfaces for domain-expert time series annotation),

GRETA [57] (a web-based solution that produces hourly wind and solar pho-

tovoltaic generation time series), and OXI [69] (an online tool for visualization

and annotation of satellite time series data). While such tools can undoubt-

edly outperform more general-purpose solutions (like Timeseria) for the use

case or domain they were originally developed for, they are deeply intertwined

with their original purpose, making them difficult to adapt, even if heavily

modifying the code.

With respect to the solutions that can instead be directly compared to

Timeseria, and in particular in the realm of the data structures, Pandas [56]

Series and DataFrames are the most commonly used for representing time

series data in the Python ecosystem. They provide basic support for time series

data trough the DatetimeIndex, which enables operations and slicing based

on time. Resampling functionalities are also supported, with basic handling

of data losses, provided that they have been already marked as null values.

Xarray [38] is another widely used option in the Python ecosystem, which

provides data structures for n-dimensional labeled arrays. Time series data

can be represented using the DataArray class, which features interfaces similar

to Pandas Series or DataFrames but is optimized for multi-dimensional data

and large datasets.

Timeseria provides instead its own data structures for time series data,

which are built mainly from scratch. This design choice was necessary in order

to achieve the consistency and abstraction levels Timeseria aimed for. Time-

seria data structures are indeed not optimized for performance, but for clarity

of abstractions and consistency. This approach made it possible to differenti-

ate between punctual observations and aggregated data, to integrate handling

of data losses into the library’s foundations, to manage time nuances as time

zones, daylight saving time, and calendar time effectively, and more.

Higher-level solutions are built almost exclusively on top of Pandas or Xar-

ray data structures, and thus lack the consistency and abstraction levels that

Timeseria can provide. In the following we report the most notable ones, which

typically focus on modeling aspects.

SKtime [54] and Tslearn [80] are general-purpose Python libraries for a

variety of time series machine learning tasks, offering a combination of tools

for pre-processing, feature extraction, clustering, classification, regression and

forecasting.

TSflex [84] is a Python toolkit for flexible time series processing and feature

extraction, claimed to be particularly efficient and making few assumptions

about the underlying data. As mentioned earlier, it is one of the few examples

78

that aim to address the fundamentals properly, albeit with a narrow focus.

GluonTS [2] is a Python package for probabilistic time series modeling fo-

cusing on deep learning models, and AutoTS [47] is a package designed for

rapidly deploying high-accuracy forecasts at scale, testing several forecasting

models using a genetic approach, and finding the best candidates autonomously.

Prophet [82] is instead defined as a procedure for forecasting time series

data based on an additive model where non-linear trends are fit with yearly,

weekly, and daily seasonality, along with holiday effects, which is implemented

in both R and Python.

Greykite [36] aims to provides flexible, intuitive and fast forecasts through

its flagship algorithm, Silverkite, which is particularly indicated for time series

with change points in trend or seasonality, event/holiday effects, and temporal

dependencies.

PyOD [94], is a comprehensive Python library for detecting outliers and/or

anomalies in multivariate data, while Orion [3] is a machine learning library

built for unsupervised time series anomaly detection, mainly using Generative

Adversarial Networks, with the goal of identifying rare patterns and flag them

for expert review.

With respect to time series modeling, Timeseria focuses less on providing

a wide selection of models, and more on providing well-defined building blocks

that allow users to plug-in their own modeling logic with minimal effort, pos-

sibly integrating with all of the above solutions (Prophet is indeed used as an

example built-in model). The goal of this choice is to bring together the best

features of the aforementioned packages with the unique strengths of Timeseria.

Another class of related work are libraries and frameworks targeting the

entire data analyses pipeline, which are generally (if not entirely) mutually

exclusive with Timeseria. We identified three of them as the most relevant

ones: Darts, Kats, and ETNA.

Darts [34] is a Python machine learning library for time series, with a focus

on forecasting. It offers a variety of models, from classics such as ARIMA

to state-of-the-art deep neural networks. It provides a dedicated main class

TimeSeries which stores data as a DataArray (from the Xarray package).

Kats [26] is a light-weight, easy-to-use, extendable, and generalizable frame-

work to perform time series analysis in Python. It aims to provide a one-stop

shop for techniques for univariate and multivariate time series including fore-

casting, anomaly and change point detection, feature extraction, and more.

Kats provides a dedicated TimeSeriesData structure to represented univariate

and multivariate time series, which is based on a tuple of Pandas Series, one

for the timestamps and one for the values.

ETNA [14] is a time series forecasting framework which aims at ease of

use. It includes functionalities for time series pre-processing, feature genera-

tion, several forecasting models with a unified interface, model combinations

and evaluation trough back-testing. It makes use of a TSDataset format for

representing time series data, which is a wrapper around a Pandas DataFrame,

offering several functionalities for time series data.

79

While all of the work presented in this section could be compared to Time-

seria to some extent, only Darts, Kats and ETNA show significant overlap and

can thus be compared in a direct way. We therefore conducted a comparative

analysis to highlight their respective differences, with particular attention to

Timeseria unique functionalities but also from other angles, that is presented

in Table 5.1.

Timeseria Darts Kats ETNA

Dedicated, object-
oriented base data
structures

yes no no no

Differentiation be-
tween aggregated
and punctual ob-
servations

yes no no no

Extensive time
zone and calendar
time support

yes no no no

Extensive support
for data losses

yes, with
auto-detect

no no no

Dedicated, inter-
active plotting

yes no no no

Forecasting yes yes yes yes

Reconstruction yes no no no

Anomaly detec-
tion

only
model-based

with several
techniques

only as outliers only as outliers

Model apply 1 yes, for all
models

no no no

Evaluation and
cross-validation1

yes
only as utility
functions for
the residuals

no
yes, as pipeline
back testing
functionality

Support for cus-
tom models

yes, with
several

functionalities

limited, no
significant

functionalities

limited, no
significant

functionalities

yes, with
several

functionalities

Built-in models
few, mainly as

examples
several several several

Probabilistic sup-
port

under
development

yes
only for
forecasts

only for
forecasts

Computing
performance1

lower than
standard

standard standard standard

Table 5.1: Comparison of Timeseria with similar solutions (Darts, Kats, ETNA). [1] Such
methods are intended as functions that perform their task in just one call, without requiring
any extra code. [2] By “standard” performance it has to be intended the performance that
can be obtained when relying on Pandas or Xarray data structures.

80

5.3 Architecture and functionalities

Timeseria presents itself as a Python library that can be imported and used

in interactive data analysis environments (as the Jupyter Notebooks), batch

data analysis pipelines as well as in more structured projects. Its features work

in both environments, e.g. the logger is fully customizable through handlers

and the plots can be rendered either as interactive applets or static images.

As previously mentioned, Timeseria provides set of objects that can be

easily combined together, the most basic one representing a simple point in a

space. This is then declined in a point in time, and in a point with some data

attached. Combining the two leads to a data point in time with some data

attached, which is one of the data structures most widely used in Timeseria.

In order to represent aggregated data, Timeseria introduces the slot con-

cept. A slot ranges from a point to another and naturally defines a unit, which

corresponds in first approximation to its length. Both points and slots can have

data attached. Similarly as for the points, also the slots can live in time and

have some data attached. However, slots do not carry pure observational data,

but always aggregates: an average temperature, a count of cars, an energy, an

average stock price.

Series are defined as sequences of points or slots, with the added require-

ments for slot series to be “dense”: slots must be in succession, with no gaps.

This is one of the main structural requirements of Timeseria, and is based on

the concept that while points represent samples in a space (the time, in this

context) which can be acquired anywhere, aggregated data represents instead

a discretization: it forms a grid, and therefore cannot have holes.

To manipulate series, Timeseria provides a set of operations plus two trans-

formations: resampling and aggregation. Operations can return other series

or scalar values, and include merging, filtering, slicing, rescaling, offsetting,

integrating and differentiating as well as computing summary values as the

average, the minimum and the maximum, and more.

The resampling transformation creates new, evenly spaced data points mak-

ing use of a given interpolation strategy in order to fill gaps due to missing

samples. The aggregation transformation applies instead one or more aggrega-

tion operations, and if applied on sparse point series it first resamples it. Any

operation returning a scalar value can be used in the aggregation (the average

being the default one). Both transformations also compute the data loss for

each point or slot.

Timeseria also provides a base class for generic models, and specific base

classes for forecasters, reconstructors and anomaly detectors. These provide

common functionalities as fitting, applying, evaluating and cross validating

a model. Some specific implementations are provided, as simple periodic-

averages, auto-regressive moving averages (ARIMA), automatic procedures as

Prophet and Deep Learning-based ones as LSTM neural networks. However,

Timeseria provides such implementations more as examples, and while they

can already provide interesting forecasting, reconstruction and anomaly detec-

tion capabilities for basic tasks, the intent is to let users easily extend the base

81

model classes plugging n their own implementation (while relying on Timeseria

for the common functionalities).

The following diagram represent the main classes that reflect the concepts

outlined above, and their compositions:

Figure 5.1: Timeseria base classes structure

Other modules include the Units module, where slot units are defined; the

Plots module, for the plotting engines; the Storage module, for the data stor-

ages; the Interpolators module, where interpolation strategies are defined; the

Utilities module, which provides common functions for utility tasks; and the

Exceptions module for custom errors.

In the following, classes are represented in mono-space font using camel

case (e.g. MyClass) while methods, functions, attributes and variables are

represented in mono-space font using lower case letters and underscores (e.g.

my_function(), my_variable).

5.3.1 Datastructures

The datastructures module provide all the base data structures: Points,

Slots and Series, together with their specializations.

A Point is just a point in any n-dimensional space, as for example given

by the coordinates 1,2. It supports common mathematical operations with

respect to other points or units. A TimePoint is a point in the time dimension,

measured in epoch seconds, where the zero corresponds to the midnight of 1st

January 1970, UTC. Sub-second precision can be achieved with decimals. Time

points support being initialised both using epoch seconds (with the t argument)

and datetime objects (with the the dt argument). They also provide the

82

respective attributes for ease of use. Time points support arithmetic operations

with respect to other time points, time units, epoch seconds (as floating point

variables) and with datetime objects. This makes it very easy to navigate

along the time axis, so that for example a time point can be easily shifted one

month in advance by just adding a one-month time unit. A DataPoint is an

extension of the point concept, with some data attached. This can be any kind

of valid Python data, however Timeseria works best with list-based or dict-

based data. To then define data points is time, Timeseria merges DataPoints

and TimePoints, creating the DataTimePoints.

DataPoints and DataTimePoints can also have a “validity region” at-

tached, which defines where their data should be considered as representative.

If not set, this is usually automatically computed according to the context. If

set, this allows to account for variable sampling rates, and most importantly

to discriminate between an increased sampling interval and a data loss.

While points represent punctual observations, Slots are instead defined

from a start to an end. Slots are naturally associated with a unit, which

represents the slot span. Slot start and end are Point objects, while the unit is

an Unit object. Similarly to the points, also for the slots Timeseria defines the

DataSlots, TimeSlots and most importantly the DataTimeSlots. The triplet

start-end-unit must be consistent, and only two of them are required to be

set. For example, to create a one-day slot containing the average temperature

value for the 21st November 2022, this can be achieved creating DataTimeSlot

with a start set to a TimePoint for the 21st November 2022 and a slot unit set

to a TimeUnit object of “1D” (one day). The slot end is then automatically

computed (and vice-versa).

Both points and slots support a data_loss attribute, which is a key feature

in Timeseria. This represents the data loss occurred when computing a new

point in resampling (i.e. because its nearest neighbor was too far), or when

computing a new slot in aggregating (i.e. because there were missing punctual

observations for that slot). Keeping track of data losses is important when

deriving conclusions from data or when fitting a model, to prevent misleading

conclusions in the first case and the so called “garbage in - garbage out” issue

in the second.

The data loss is a particular case of a more generic concept: the data

indexes. These are indicators in the 0.0 - 1.0 range of some property of the

data, attached to each data point or slot. Example data indexes include, besides

the data loss, the data reconstructed index, the forecast index, and the anomaly

index. Data indexes are recomputed when resampling or aggregating, so that

they are correctly carried on.

Series are defined as a list of items coming one after another, where ev-

ery item is guaranteed to be of the same type and in an order or succession.

Ordering is checked with the standard comparison operators, while it is up to

the series items to define a succession logic, if any. In Timeseria, points never

define a succession, while slots always do. In other words, it is enforced that if

data is slotted, it then must be dense, without any hole.

83

Series can virtually contain any data type, but Timeseria put its focus on

(Data)Points and (Data)Slots, and in particular on (Data)TimePoints and

(Data)TimeSlots, which define the TimeSeries. Series and time series support

a variety of manipulation operations, as slicing, filtering, duplicating, extend-

ing, and several mathematical operations, as it will be explained in Section

5.3.2. They also support two transformations: resampling and aggregating,

which will be introduced in subsection 5.3.3.

Time series also have a resolution attribute, which represents the temporal

resolution. This concept is similar to a sampling interval, but generalised in

order to make it compatible with slots as well. For example, a point time

series sampled at 1-minute intervals has resolution corresponding to the time

unit “60s”, while a one-day slots time series has resolution corresponding to

the time unit “1D”. Time series with a variable sampling rate (e.g. due to a

non-constant sampling process) report instead “variable” as their resolution.

Lastly, one of the main architectural features of Timeseria is to allow time

units to have variable length. This allows to effectively model months with a

variable number of days, and days with a variable number of hours (due to the

daylight saving time). It does indeed not hold true that a time unit of 24 hours

(“24h”) is equal to a time unit of one day (“1D”) : the first is always exactly

24 hours, while the second can assume different lengths: 24, 24 or 25 hours,

depending whether there is an ongoing change in the daylight saving time, and

in which direction.

Series and time series can be created in a number of ways, and in particular

from a list of items, a Pandas DataFrame, or a path to a CSV file (which will in

turn use the Storage module to read and parse it). They also provide, among

the others, a to_csv()() method to save them as a CSV file, and a to_df()

method to obtain their contents as a Pandas DataFrame.

5.3.2 Operations

Operations can return another series, a scalar, a list of items, or any other

valid data type. An operation, if returning a series, an operation never changes

its shape (intended as the resolution), which is a task reserved for the transfor-

mations. Timeseria provides several built-in operations, as: Min, Max, Avg and

Sum, which operate on a series and return scalars; Derivative and Integral

and their discrete counterparts Diff and CSum (cumulative sum), MAvg (moving

average), Normalize, Offset, Rescale, Filter and Slice, which all operate

on a series and return another series; Merge, which operates on two or more

series and return the merged series; and lastly the Select operation, which

allows to select (and return) only specific items of a series. All operations can

also be accessed as series methods, e.g. series.diff().

5.3.3 Transformations

The Transformation class represents a generic transformation concept,

which if applied on a series changes its shape. Timeseria provides two trans-

84

formations, the Resampler and the Aggregator. The first transforms a point

series into another point series with a different resolution (sampling interval),

the second transforms a point series in a slot series, aggregating it accordingly

to the given unit. Both of them recreate missing data using an Interpolator,

which is by default a linear interpolator, and set the data_loss attribute of

the new points or slots It has to be noted than while the resampling transfor-

mation is to be considered an alternative “view” of the original signal, which

should be driven by the Nyquist–Shannon sampling theorem, an aggregation

computes instead indicators of the underlying signal, the default one being the

average. Aggregators can support one or more of these indicators, which are

just the operations of the previous module (assuming they return a scalar).

Custom operations extending them can also be plugged in. The aggregation

operation(s) can be changed simply by setting the operations argument when

initializing the aggregator, either passing the operations themselves or just

their string representations. For example, the aggregator initialized with the

statement: Aggregator('1D', operations=['min','max','avg']) will ag-

gregate the series in daily slots where each of them will contain the average

value together with its minimum and maximum. As for the operations, also the

transformations can be accessed as methods of the series object, for example

as series.resample('1h').

5.3.4 Models

The base Model class can represent both stateless models, where all the in-

formation is coded and there are no parameters, and stateful (parametric) mod-

els, where there are a number of parameters which can be both set manually or

learned (fitted) from the data. All models expose a predict(), an apply() and

an evaluate() method. Parametric models also provide a save() method to

store the parameters of the model, and an optional fit() method if the param-

eters have to be learned form the data. In this case also a cross_validate()

method is available. Models operating on series also enforce time resolution

granularity and data consistency between methods and save/load operations,

and require the series to have fixed, non-variable time resolution in order to

operate. If this is not the case, for example because the data is not equally

spaced over time, or because it has some missing data, then it can be just

resampled (or aggregated).

Models are sub-dived in three main categories: forecasters, reconstructors,

and anomaly detectors.

• Forecasters: this class of models is dedicated to forecasting new data.

Forecasters predict n steps ahead, either using their internal logic to

predict all of them in one go, or by recursively re-applying the same logic

n times, using previously predicted data as if it was actual data.

Forecasters can operate with or without a window, and the window size

can be any value greater or equal than one. Edge cases (as applying the

forecaster on a time series with not enough elements) are automatically

85

handled by the base Forecaster class, which also adds the forecast data

index on foretasted data points (or slots).

Forecasters can be evaluated by making use of one or more error met-

rics, including custom ones, plotting the error distribution, and visually

inspecting the resulting time series. Cross validation is available as well.

Some examples of the forecaster available in Timeseria include the Periodic

AverageForecaster (a forecaster based on computing periodic averages

over historical data), the LSTMForecaster (which makes use of an LSTM

neural network), and the AARIMAReconstructor (which makes use of an

auto-ARIMA model).

• Reconstructors: this class of models work on reconstructing missing

data, or in other words to fill gaps. Gaps need a “next” element to

be defined, which can bring much more information to the model with

respect to a forecasting task. Gaps are identified using the data_loss

attribute, on both data points and slots. By default, only gaps with a

full data loss (e.g. a sequence of slots where there were no underlying

data points at all) are reconstructed.

Reconstructors can operate with or without a window, which can be

present before the gap, after the gap, or both. The window size can

be any value greater or equal than one. Edge cases (as applying the

reconstructor on a series with not enough elements before or after a gap)

are automatically handled by the base Reconstructor class, which also

adds the data_reconstructed data index on data points (or slots) that

were reconstructed according to the reconstructor policy.

Evaluating a reconstructors takes in input one or more gap length, and

can make use of one or more error metrics. It is not a trivial task as the

gap lengths to be used for evaluating a reconstructor should depend on

their distribution in the dataset, making it a dataset-dependant task.

Examples of reconstructors include the PeriodicAvergeReconstructor

(based on periodic averages of historical data), the ProphetReconstructor

(which makes use of Facebook’s Prophet, an automated modeling pro-

cedure), and the LinearInterpolationReconstructor, which is par-

ticularly useful for benchmarking purposes. The reason why there is a

dedicated reconstructor based on an interpolator, instead of just listing

the interpolator, is because Timeseria makes a distinction between in-

terpolators and reconstructors: interpolators are used in the transforma-

tions, before resampling or aggregating data and must therefore support

variable-resolution series, while reconstructors require fixed-resolution se-

ries.

• AnomalyDetectors: this class of models aim at spotting anomalies sin

a given time series. As explained in chapter 3, there are a number of

ways to achieve this goal, and as of today, Timeseria implements only

model-based anomaly detection.

86

Besides the generic base AnomalyDetector class, Timeseria provides the

ModelBasedAnomalyDetector class for such task, which implements all

of the model-based anomaly detection logic. Any model sub-classing

the base Model class can be plugged-in, and in particular all of the

Forecasters and Reconstructors, including user-defined ones. Each

data point or slot is then assigned with an anomaly data index, represent-

ing the likelihood of that point or slot of being anomalous, as described

in Section 4.2.1.

The difference between using a reconstruct or a forecaster lies in what

data visibility the they require: forecaster only require the last data point

and can thus be used in a “live” setting, while reconstructors cannot as

they always require one (or more) “next” data point(s). Besides these

two base class, Timeseria provides some pre-assembled anomaly detec-

tors, and in particular the PeriodicAverageAnomalyDetector and the

LSTMAnomalyDetector, both based on their respective forecasters.

While the above description listed some common model implementations,

the true goal of Timeseria is to provide a framework where to easily plug-in

custom modeling logic by extending the base classes. Indeed, when extending

them, a set of common methods and decorators is automatically inherited, so

that only the model-specific logic needs to be coded. For example, the base

Forecaster class provides the apply(), evaluate() and cross_validate()

methods, together with two decorators: @Forecaster.fit_method and

@Forecaster.predict_method, to be used to decorate the custom fit() and

predict() methods. All common functionalities, including the save() and

load() methods as well as the data consistency checks, are thus automatically

handled.

5.4 Implementation

Timeseria is implemented in Python 3 and versioned with Git. The source

code is available on GitHub2 (Figure 5.2), and released as Python package on

PyPI3 (the Python Package Index).

All the base data structures are implemented as custom objects, except

from the series and the time series which instead extend the Python list object,

thus reusing several built-in functionalities. Timeseria is easily extensible by

sub-classing the base classes provided in the various modules.

The Plotting engine makes use of the Dygraphs Javascript library, and can

generate interactive plots within Jupyter Notebooks and Jupyter Lab, saving

them as HTML files (also useful for embedding them in websites or web appli-

cations), or as static images. Such engine is capable of plotting even millions of

data points thanks to pre-aggregating data: in this case the average value of a

set of data points (or slots) is plotted as a line chart together with the minimum

2https://github.com/sarusso/Timeseria
3https://pypi.org/project/timeseria/

87

Figure 5.2: Timeseria Git repository on GitHub.

and maximum values as an underlying area chart, so that peaks are still visible

even if data is aggregated. A similar approach is implemented in [83], and it

is important when visually inspecting large time series. The time is manages

using the propertime4 library, which was developed together with Timeseria.

Such library makes use of Python built-in datetime objects while extending

them in order to provide strict time management, as for example not allowing

any naive timestamp (without a timezone / UTC offset) and enforcing correct

DST changes. It also includes a dt_range object which overcomes several pit-

falls of Python timedelta. Other libraries include the chardet library, used for

automatically detecting the encoding of the CSV files, and the Numpy’s Fast

Fourier Transform (FFT), used for detecting periodicity.

In general, Timeseria is not performance-oriented, but rather consistency-

oriented. Its implementation optimizes indeed for consistency over perfor-

mance, following the assumption that, with today’s computing power, for a

variety of tasks performance is somewhat secondary, while data consistency is

the most important requirement.

Timeseria is relatively well tested, being its development mainly test-driven,

and as of today a total of 128 test cases with 1411 assertions ensure a good

coverage. Each commit on the GitHub repository is automatically tested using

GitHub Actions, in a continuous-integration fashion. Versioning of releases

follows semantic versioning (v2.0.0), and the reference Timeseria version for

this thesis work is version 2. The documentation is automatically generated

using Sphinx and Napoleon, and made available online5 (Figure 5.3).

4https://github.com/sarusso/Propertime
5https://timeseria.readthedocs.io/

88

Timeseria also comes with a set of example Jupyter Notebooks, available on

a GitHub repository6, and with a Docker container available on Docker Hub7,

which allows for full reproducibility of all the examples.

Figure 5.3: Timeseria Sphinx-based documentation on Read The Docs.

5.5 Illustrative examples

The following examples can be executed with a vanilla installation of Time-

seria, either in a Jupyter Notebook environment or within a standard Python

script. In this case, the plots must be generated as images and saved to a

file, adding the following extra arguments to each plot() call: image=True,

save_to='plot.png'. For the LSTMForecaster, the extra tensorflow op-

tional dependency is required.

Load some data

This example loads an indoor temperature and humidity dataset using the

TimeSeries.from_csv() initializator. The time zone is assumed as UTC since

not otherwise specified. The time series is then printed and plotted, with an

(automatic) aggregation factor of ten to speed up the plotting and preventing

web browsers to crash if using interactive plotting.

from timeseria import TEST_DATASETS_PATH as PATH

from timeseria.datastructures import TimeSeries

timeseries = TimeSeries.from_csv(PATH + "humitemp.csv")

6https://github.com/sarusso/Timeseria-notebooks
7https://hub.docker.com/r/sarusso/timeseria

89

Time series of #14000 points at variable resolution (~615s), from point @

1546475294.0 (2019- 01-03 00:28:14 +00:00) to point @ 1555544819.0 (2019

-04-17 23:46:59 +00:00)

timeseries.plot()

Figure 5.4: The time series plotted, with an (automatic) aggregator factor of ten. The area
chart underlying the line chart indicates minimum and maximum values for each aggregated
data point, in order to retain information about peaks.

Resample to hourly data

This example resamples the temperature time series loaded in the previ-

ous example at one hour sampling interval, making data uniform and equally

spaced over time. Gaps are filled by linear interpolation (the default interpola-

tion method when resampling) and the data_loss index is added to the data

indexes. Then, it prints and plots the time series.

timeseries = timeseries.resample("1h")

print(timeseries)

[INFO] Using auto-detected sampling interval: 615.0s

[INFO] Resampled 14000 DataTimePoints in 2519 DataTimePoints

Time series of #2519 points at 1h resolution, from point @ 1546477200.0 (2019

-01-03 01:00:00 +00:00) to point @ 1555542000.0 (2019-04-17 23:00:00 +00:00)

timeseries.plot()

Figure 5.5: The resampled time series plotted. The data loss index is rendered as an over-
lapped red area chart.

90

Three-day hourly forecast

Using the previously resampled time series, this example first cross validates

a LSTM neural network forecasting model with three rounds, meaning that the

time series will be divided in six different datasets (three for fitting, three for

evaluating). Then, it fits and applies such model with a forecasting horizon

of 72 (hourly) steps, in order to get three days of temperature forecast. Data

marked as missing is excluded from both the training and the evaluation of the

model. The resulting time series is then plotted.

from timeseria.models import LSTMForecaster

forecaster = LSTMForecaster(window=24, neurons=256 ,

↪→ features=["values", "hours"])

print(forecaster.cross_validate(timeseries , rounds=3,

↪→ evaluate_error_metrics=["RMSE", "MAPE"]))

forecaster.fit(timeseries , epochs=100 , reproducible=True)

timeseries = forecaster.apply(timeseries , steps=72).plot()

[INFO] Cross validation round 1/3: validate from 1546477200.0 (2019-01-03

01:00:00+00:00) to 1549497600.0 (2019-02-07 00:00:00+00:00), fit on the rest.

[INFO] Cross validation round 2/3: validate from 1549497600.0 (2019-02-07

00:00:00+00:00) to 1552518000.0 (2019-03-13 23:00:00+00:00), fit on the rest.

[INFO] Cross validation round 3/3: validate from 1552518000.0 (2019-03-13

23:00:00+00:00) to 1555538400.0 (2019-04-17 22:00:00+00:00), fit on the rest.

{'humidity[RH]_RMSE_avg': 1.168,

'humidity[RH]_RMSE_stdev': 0.207,

'humidity[RH]_MAPE_avg': 0.0196,

'humidity[RH]_MAPE_stdev': 0.004,

'temperature[C]_RMSE_avg': 0.362,

'temperature[C]_RMSE_stdev': 0.039,

'temperature[C]_MAPE_avg': 0.011,

'temperature[C]_MAPE_stdev': 0.002}

timeseries.plot()

Figure 5.6: The time series plotted together with the forecast. The forecast is visible through
its data index, rendered as a yellow area chart.

91

Perform anomaly detection

This example fits and applies a simple anomaly detection model based on

periodic averages. By default the anomaly detectors assumes to work in unsu-

pervised mode, using some “sane defaults”. Data marked as missing is excluded

from the anomaly detection process, in order to prevent false positives. The

time series is then plotted together with the anomaly data index, computed

as per Section 4.2, which allows for visual inspection: the bigger anomaly is

detected around the 25th of January, when there is an unexpected drop with

respect to the “normal” behavior.

from timeseria.models import PeriodicAverageAnomalyDetector

anomaly_detector = PeriodicAverageAnomalyDetector ()

anomaly_detector.fit(time_series)

timeseries = anomaly_detector.apply(timeseries)

[INFO] Using a window of "24" for "humidity[RH]"

[INFO] Using a window of "24" for "temperature[C]"

[INFO] Predictive model(s) fitted, now evaluating...

[INFO] Computing actual vs predicted for "humidity[RH]"...

[INFO] Computing actual vs predicted for "temperature[C]"...

[INFO] Model(s) evaluated, now computing the error_metric distribution(s)...

[INFO] Anomaly detector fitted

timeseries.plot()

Figure 5.7: The time series plotted together with the anomaly index, rendered as an orange
area chart.

Aggregate to daily data

This example aggregates the time series used in the previous examples into

1-day slots, also computing the minimum and maximum operations besides the

(default) average one. Before aggregating, the time zone is changed to the right

one for this dataset, in order to get the daily aggregates right, and to properly

take into account the DST change in March. Data indexes are correctly recom-

puted and carried on in the aggregation process. The aggregated time series is

then plotted, together with all of its (aggregated) data indexes.

92

timeseries.change_tz("Europe/Rome")

timeseries = timeseries.aggregate("1D",

↪→ operations=["min","max","avg"]).plot()

[INFO] Using auto-detected sampling interval: 3600.0s

[INFO] Aggregated 2494 points in 103 slots

timeseries.plot()

Figure 5.8: The aggregated time series plotted, as a step plot. To be noted that the data
loss index was recomputed, according to the aggregation unit, and brought forward.

93

Chapter 6

A case study: Water

Distribution Systems

6.1 Introduction

Water Distributions Systems (WDS) are a core part of modern city infras-

tructures, providing a constant water flow from facilities as treatment plants

and wells to the final users. Over this path, many components are involved and

subject to potential failures, as pipes, valves, pumps, storage tanks, and more.

Leakages and breakages are the two most common type of failures, the second

being a direct cause of the first one, if small enough not to be disruptive.

A leakage in an underground pipe that goes unnoticed does not only mean

wasting a precious resource as water is, but can also cause erosion to the point

of creating voids in the above terrain. If such erosion occur in a urban context,

roads can collapse and building foundations can shift, posing a severe risk to

the population. In case of sudden breakages instead, part of the buildings in

the surroundings can be left without water, which is particularly problematic

should one of these buildings be a critical infrastructure itself, as an hospital.

Over the course of recent years, ICT (Information and Communication

Technologies) have seen an increasing adoption in the domain, not only in terms

of software components, as Data Analytics (DA) tools and Decision Support

Systems (DSS), but also as field-deployed solutions enabled by new hardware

devices. More and more WDS are being equipped with remote monitoring sys-

tems, in order to better understand their dynamic, perform optimisations, and

schedule maintenance tasks.

Some examples of these applications include burst detection [77, 12, 27, 13],

water demand reconstruction [28] and forecasting [70, 18, 22], optimization of

WDS segmentation [61, 29], water balances [59], evaluating key performance

indicators [5] and developing new hydraulic and numerical models [24, 66, 89].

However, many issues can arise with the sensors themselves, in particu-

lar given the harsh environment in which they operate. Sensors not working

properly can jeopardize such initiatives, and lead to unusable historical data.

94

It is therefore clear that having a robust anomaly detection process in place

that operates in a timely manner can bring significant benefits, both in terms

of detecting sensor issues and failures in the system itself, thus allowing to

promptly address them.

In particular with respect to the the WDS domain, attempts of anomaly de-

tection include Isolation Forest and K-Means [40], clustering and support vector

regression [11], multi-class LDA [79], wavelet change-point detection methods

[17] and logit models [37]. For anomaly classification, K-nearest neighbour [76],

decision trees and SVM [93], and extracting short-term variations in combina-

tion with Isolation Forest [91] or Dynamic Type Warping [90, 30, 41].

Such attempts usually assume a static scenario, which is more oriented

towards data mining applications rather than performing anomaly detection

in an online fashion, which is a key factor for preventing issues in real-world

scenarios.

Moreover, it has to be noted that the vast majority of the data used for sci-

entific research in the WDS domain is from well known and curated datasets, as

the Net3 dataset by EPANET or, most recently, simulation-based and synthetic

data [58]. In particular, within the studies to be considered as relevant for this

case-study, only a few tested their methods on real-world data [37, 76, 30, 4, 72],

yet “tailoring” it for the specific task.

Given the global shift towards digitization [19] in the water management

domain, we are entering a phase where new methodologies are not only required

to be validated in an offline, synthetic environment, but also to be proven robust

and scalable in real-world settings so that they can be transferred and deployed

back to the industry.

The aim of this case-study is thus not only to asses the validity of the

methodology proposed in this thesis work, but also to evaluate how it can be

applied in such real-world scenarios.

6.2 Description

The dataset considered in this case study is from a WDS in the Friuli

Venezia Giulia region, in northern Italy, which is currently monitored by Idros-

tudi s.r.l., an engineering company working in the water management domain.

Such dataset consists of 14 measurement points, which are locations of

the WDS where one or more measurements are performed together. For each

measurement point, flow rate and pressure sensor were deployed, and sampled

each six minutes using a digital acquisition device. Flow rate is measured in

l/s, while pressure in bar. The data data is then collected by a data logger

with internet connectivity, and sent to a centralized server, in an ordered way.

The total length of the data at the time of this work is of about two years, and

Figure 6.1 shows an example of such data over a 7-day period.

As already mentioned, in real-world scenarios operating in harsh environ-

ments, it is common for the data acquisition process to fail. This can be due

to hardware failures, lack of power or communication issues.

95

Figure 6.1: Example time series for one of the measurement points, over a 7-day period.

Hardware failures when reading sensors, if temporary, are often mitigated

by retying multiple times to perform the measurement. However, when the

retry limit is reached, or where there is just no such mechanism in places, it

is common to see such value in the dataset to zero. This is perhaps not the

best approach, as a “N.A.” or null value would be far more suitable, but it is

a well established practice in the monitoring hardware industry, including for

the acquisition devices of this use-case, and it has therefore to be accounted

for.

Losing data due to communication issues can be instead be almost com-

pletely avoided using local buffers. This does not mitigate the issue of loosing

real-time, or near real-time access to the data, but when performing histori-

cal (or just delayed) analysis, such samples will be present. When instead a

measurement could just not be performed, for example because the acquisition

device was not operative (either due to a device-level failure or a lack of power),

or because there was a transmission issues not handled by a buffer, then such

measurements are just missing.

Image 6.2 shows an example of such hardware failures, when a data loss oc-

curred. The missing data was detected and marked as such using the Timeseria

library, which was used for all of the data pre-processing phase.

Figure 6.2: Example time series for one of the measurement points, over a 7-days period,
and with a data loss (marked in red)

In general, data losses were frequent across the dataset, with an overall

impact in the range of about 5-10%, as shown in Figure 6.3.

96

Figure 6.3: Example time series for one of the measurement points, over a 2-month period,
with several data losses (marked in red)

6.3 Methods

6.3.1 Data pre-processing

The vast majority of data analysis an modeling techniques for time series

data expect uniform, evenly spaces samples. In case of data losses, a common

practice is to reconstruct the missing values, either via interpolation or more

sophisticated techniques.

However, if by doing so the reconstructed values are indistinguishable form

the others, then every subsequent step will be flawed: it is much different

to draw conclusions when an analysis was performed on a time series with a

5% data loss than on a time series with a 47% data loss. The same applies for

forecasting models, given that fitting a model on large portions of reconstructed

data, or applying it using a window with a significant data loss, will cause the so

called garbage-in garbage-out effect. It is therefore important to keep track of

the data losses in the data, in particular when aiming for an anomaly detection

process to be robust and capable of keeping under control the false positives.

Another key aspect of the data pre-processing is that it should be able to

be applied both in an offline and in an online fashion. In particular with the

latter, the resampling step must take into account whether it can create a new

sample, or it has to wait for more “evidence”. In other words, a data loss can

be confirmed as such only when there is a “next” data point confirming that

the data loss actually occurred, and that the acquisition process was not just

delayed.

The Timeseria library was designed with these two requirements in mind:

not only it attaches a “data loss“ index to each data point when resampling,

but it also does not declare any data loss unless it has evidence that it actually

occurred, and it was thus used to resample the data.

Before resampling, undeclared failures in sensor readings had to be removed.

As mentioned in the previous section, the acquisition devices in this use-case

do not mark explicitly when a sensor could not be read, but they log a zero

instead. Luckily, a sensors measuring a physical quantity will never measure

exactly zero, due to the intrinsic noise in the measurement process. Such

zero values were therefore just dropped before the resampling process, and

consequently marked as data losses.

97

Once the data was resampled in this way, it become possible to exclude

from the model fit phase the portions of the data presenting a data loss above

a given threshold. This threshold was chosen to be equal to zero, that is, the

models were fitted only on perfectly acquired data). In the inference phase,

this threshold can (and has to) be relaxed, given that i) it has much smaller

consequences to perform inference on potentially unreliable data rather that

to use it to build that model, and ii) excluding from the anomaly detection

process portions of the data just because of a small data loss would be counter-

productive.

6.3.2 Model Selection

In model-based anomaly detection, any model capable of making a predic-

tion is suitable for the task. Classical modeling approaches in the WDS domain

make use of domain-specific numerical models as EPANET, which was for ex-

ample used in [73] to detect leakages. Such models, although very accurate,

require complex calibrations and are very intensive from a computational point

of view.

Also taking a statistical approach could serve for the purpose, for example

by computing the historical averages to then evaluate if the water consump-

tion is not aligned with the historical behavior, as done in [46] for detecting

failing or tampered meters. While such naive models can be useful to detect

macroscopic issues to some extent, they are incapable of capturing the complex

dynamics a WDS can be subject to and to perform fine-grained anomaly de-

tection. ARIMA-like approaches (as SARIMA and ARIMAX) and derivatives

(as Facebook Prophet) have to be excluded, as explained in section 4.4.

More sophisticated models have been implemented in recent years using

Machine Learning (ML) and techniques. An example of such models, besides

simple linear regression, is represented by SVM machines [?]. In the area of

sewer systems, some studies already showed the superiority of ML over more

classical approaches, as for example to to predict in-fluent flow rate [4].

The most promising approach to time series forecasting is based on Deep

Learning (DL) techniques [74, 25]. However, in the field of Water Distribution

Systems, adoption of DL is still limited. While some studies already evaluated

simple feed-forward neural networks for water quality [72] and automated de-

tection of pipe bursts [67], only recently research moved towards more complex

architectures such as Convolutional and LSTM neural networks, as for exam-

ple for urban water demand prediction [39], optimal pumps control [50], and

overflow prediction in sewer systems [92, 44]. In all studies, result were very

promising.

This thesis work will therefore build on top of these findings and make

use of DL-based forecasting models. Within the models presented in section

4.3, the most accurate ones are the Transformer-based and the LSTM neural

networks, while the others are either sub-optimal (as the RNNs) or focus on

reducing the computational complexity (as the GRUs and TCNs), which is

not relevant in this context: the datasets are not particularly large and there

98

are no requirements of running the anomaly detection on resource -constrained

devices (in an edge computing fashion). For these reasons, only the LSTM and

Transformer-based neural networks were considered in this use-case.

Moreover, an ensemble of two models was used, for each quantity: one more

sensible to correlations, and another one more sensible to patterns, which are

introduced below.

Correlation-based. This is a contextual forecasting model, as per section

3.2.2.2, with the aim of capturing the correlations between the physical

quantities being monitored. Given a quantity to predict for the time step

t + 1, the model has visibility over the other quantity (the context) for

that timestamp as well, besides of n previous data points (the window

size). This was set to 10 (one hour of data at 6-minute sampling intervals)

in order to give context to the model without allowing it to capture any

pattern. When an observation will be found not compatible with this

model, and therefore the correlation breaks, it will likely be due to a

sensor malfunction. Figure 6.4a summarize such model setup.

Pattern-based. This model is a pure forecasting model, and has visibly only

of the previous n data points, with no information about the current

time step. However, n (the window size) is sensibly longer than in the

correlation-based model, enough to capture patterns, and thus set to

240 (24 hours of data at 6-minute sampling intervals). Such setup is

summarized in Figure 6.4b. This model will thus be more likely to spot

physical (dynamic) anomalies, where the correlation between the sensors

might not break, but instead, intuitively speaking, all senors will agree

that something “strange” is being measured.

(a) (b)

Figure 6.4: Schematic representation of correlation-based (a) and pattern-based (b) models
setup. Each line of dots (green and blue) represents a physical quantity. The yellow highlight
represents the prediction target (at t+ 1).

In order to optimize the hyper parameters of these two sub-models, an evo-

lutive algorithm was used, as described in Section 4.4.2, and in more in detail

a relatively new approach: Deep Evolutionary Network Structured Represen-

tation (DENSER) [7].

This is a novel evolutionary approach that combines the principles of Ge-

netic Algorithms (GAs) with those of Dynamic Structured Grammatical Evo-

lution (DSGE) for automatically optimizing the hyperparameter of DL neural

99

networks, which was also released as an open source project under the name of

Fast-DENSER [8].

Fast-DENSER in particularity is based on the concept of the elite evolution:

for each population, the best individual (model) is marked as the elite and used

as the basis for performing the mutations for the next generation.

The fitness function was designed to take into account the average error,

the maximum error, and the goodness of the error distribution fit. Taking

into account the maximum error allows to avoid choosing models that might

be slightly better than others on average but that produce much bigger errors

when they fail to make accurate predictions. This is particularly important

for setting the anomaly index lower boundary, given that, as per Section 4.4,

in semi-supervised mode the maximum error on the dataset used to define

normality is still to be considered as normal.

The error metrics were chose as relative metrics, and in particular the

MAPE and MaxAPE, while to assess the quality of the error distribution fit,

the AIC was used, given the considerations of Section 4.2.2 about the p-value.

The overall fitness function of equation 4.22 was then adopted, with an AIC

reference vale of 500, which was empirically found in terms of the average value

assumed by the AIC:

fitness =
(1−MAPE) + (1−MaxAPE) + (1−AIC/500)

3
(6.1)

A modified version of the Fast-DENSER code to support regressive tasks

was used, together with two specific grammars: one for the Transformer-based

architecture, and the other for the LSTM architecture.

Mutation rates where left as per default settings, and models were trained

with a validation split of 0.9, for at most 100 epochs, with an early stopping

mechanism in place which after 5 epochs of no sensible improvements stopped

the training.

In order to evaluate for how many generations to run the evolutive process,

a long run was performed for 1000 generations. Figure 6.5 shows the evolution

of the fitness of the global elite (the best overall individual). Based on such

experiments, the number of generations was set to 100.

Then, the evolutive runs were performed for each model and for each quan-

tity. Figure 6.6 shows an example evolution with both global and local elite

fitness, where for local is to be intended the elite of each generation, while

Figure 6.7 shows the error distribution for an individual with a poor fitness (a)

and for an individual with a good one (b).

100

(a) (b)

Figure 6.5: Evolution over 1000 generations of the correlation-based (a) and pattern-based
(b) models global elite fitness for the LSTM architecture.

(a) (b)

Figure 6.6: Evolution over 100 generations of the LSTM correlation-based model for pressure:
global elite fitness (a) and local elite fitness (b).

(a) (b)

Figure 6.7: Examples error distributions for bad (a) and good (b) fitness individuals.

101

The dataset used for these experiments is a representative subset of the

overall dataset, consisting in a time series of 10000 data points (Figure 6.8).

The simultaneous spikes in flow rate and drops in pressure that can be noted

last for few tens of minutes and often indicate the presence of a high-demand

events, such as the activation of an hydrant, which are part of the normal

operation of the network and that will be thus required to be learned as much

as possible..

Figure 6.8: Representative data used for the evolutionary algorithm.

The results of the evolutionary algorithms are reported in Tables 6.1 and

6.2. Given the no clear winner, and since LSTM neural networks were 3 to 5

times faster to train with respect to Transformer-based one, and are simpler to

handle, they were selected the reference architectures.

Quantity Architecture Fitness

pressure LSTM 0.82

pressure Transformer 0.86

flowrate LSTM 0.85

flowrate Transformer 0.70

Table 6.1: Evolutionary fitness results for the correlation-based models.

Quantity Architecture Fitness

pressure LSTM 0.81

pressure Transformer 0.83

flowrate LSTM 0.82

flowrate Transformer 0.79

Table 6.2: Evolutionary fitness results for the patter-based models.

102

6.3.3 Anomaly index settings

The anomaly index lower and upper boundaries were set based on consider-

ations of Section 4.2.2. The lower bound was set to the maximum error made

by the model on the dataset used as reference for normality, and as upper

bound it was used an adherence corresponding to 1/1020.

The anomaly detection process described so far assigns a separate anomaly

index to each quantity, and for each model. However, inspecting separately

every single anomaly index of each quantity might be unpractical. One of the

main advantages of the anomaly index defined in this thesis work is to allow

merging anomaly indexes generated by different models on different quantities.

In general, a maximum operation will mark the whole data point with the

maximum anomaly index found within its associated anomaly indexes, and

tend to minimize the false negatives. Using the average (or even the minimum)

will instead emphasize situations when most of the models “agreed”, and would

thus tend to lower or minimize the false positives.

Besides such considerations on false positives and negatives, which might

not necessarily fit the use case, one could also make other, more specific ar-

guments when combining different anomaly indexes. For example, if explicitly

looking only for anomalies involving all the quantities (e.g. macroscopic fail-

ures), then combining different anomaly indexes with a minimum operation

will not be related to minimizing the false negatives, it will just be the right

operation by design.

In this use case, the interest is not only on all the models agreeing, or on just

macroscopic failures, and thus the maximum operation was used to combine

the different anomaly indexes, while keeping track of the original ones in order

to allow for breaking down the various anomaly index when inspecting results.

6.3.4 Marking anomalous events

In order to inspect anomalies as events rather than as punctual observations,

a simple strategy was employed to mark them as such: as an anomaly event

is defined as any sequence of data points presenting an anomaly index greater

than zero (the threshold was actually set 0.01 to allow for some tolerance) and

lasting for at least two consecutive data points.

This choice was made to prevent isolated anomalies to trigger any alert,

given that domain experts are much more interested in persistent anomalies,

and given that it can greatly help in reducing false positives. It has to be noted

that this approach introduces an intrinsic delay of one data point, i.e. after

a data point presents an anomaly index greater than zero, it will be always

necessary to wait for the next one before claiming an anomaly event and thus

triggering an alert.

Gaps in anomaly events were also allowed, for a maximum of two data

points, meaning that in case of less than two consecutive data points presenting

an anomaly index of zero between one event and another, they will be merged

together (and no alarm re-triggered).

103

For each anomaly event, the maximum anomaly index together with its

average were also computed, which can be used to drawing conclusions about

the magnitude and the “certainty level” of the event.

6.4 Results

Model architectures and hyperparameters were configured based on the find-

ings of the evolutionary algorithms as per Section 6.3.2, and then plugged into

a standard Timeseria forecaster, that was in turn used as the model-based

anomaly detection engine. The data considered as reference for normality was

the first month for each measurement point, validated by domain experts to

include only nominal dynamics of the WDS.

In order to evaluate the forecasting models, the typical splitting between

training, validation and test data is not possible in this context, given that it

could end up omitting from the training some patterns still to be considered

as normal, thus misleading the evaluation: all of the “normal” data has to

be used for model training. To ensure that no over-fitting was occurring, a

cross validation has been run on the same data, which showed no considerable

differences between the cross validation rounds accuracies and the accuracy

computed by training and testing the model on the entire “normal” dataset.

Tables 6.3 and 6.3 report the MAE and MaxAPE error metrics for the first

four measurement points, while Figures 6.9 and 6.10 show an example of the

predictions, for each time step.

MP MAPE MaxAPE

#1
Flow rate: 3%
Pressure: 1%

Flow rate: 13%
Pressure: 13%

#2
Flow rate: 12%
Pressure: 1%

Flow rate: 54%
Pressure: 6%

#3
Flow rate: 3%
Pressure: 1%

Flow rate: 24%
Pressure: 7%

#4
Flow rate: 6%
Pressure: 2%

Flow rate: 58%
Pressure: 20%

Table 6.3: Accuracies for the correlation-based model.

104

MP MAPE MaxAPE

#1
Flow rate: 4%
Pressure: 1%

Flow rate: 28%
Pressure: 14%

#2
Flow rate: 10%
Pressure: 1%

Flow rate: 60%
Pressure: 5%

#3
Flow rate: 3%
Pressure: 1%

Flow rate: 26%
Pressure: 6%

#4
Flow rate: 5%
Pressure: 1%

Flow rate: 54%
Pressure: 19%

Table 6.4: Accuracies for the pattern-based model.

Figure 6.9: Example predictions for the correlation-based model on the flow rate quantity.

Figure 6.10: Example predictions for the correlation-based model on the pressure quantity.

105

Thanks to the Timeseria library, executing the anomaly detection process

was then as simple as writing a Python code based on the following snippet,

where the get_keras_model() support function is assumed to assemble the

LSTM model based on the architecture and hyperparameters found by the

evolutionary optimization:

def anomaly_detection(series_fit , series_inference , model_type):

Set parameters

window = {'correlation ': 10,

'pattern ': 240}

features = {'correlation ': ['values '],
'pattern ': ['values ', 'hours '] }

with_context = {'correlation ': True ,

'pattern ': False}

Initialize and fit the forecasting models

forecasters = {}

for data_label in ['pressure ', 'flowrate ']:
forecaster = LSTMForecaster(window=window[model_type],

↪→ features=features[model_type],

↪→ keras_model=get_keras_model(model_type , data_label))

forecaster.fit(series_fit , reproducible=True , epochs=100 ,

↪→ early_stopping=True , early_stopping_patience=5,

↪→ normalize=True , normalization='max',
↪→ with_context=with_context[model_type],

↪→ target=data_label , verbose=True)

forecasters[data_label] = forecaster

Initialize and fit the anomaly detector with the forecasters

anomaly_detector =

↪→ ModelBasedAnomalyDetector(models=forecasters)

anomaly_detector.fit(series_fit ,

↪→ with_context=with_context[model_type],

↪→ error_metric='PE', error_distribution='gennorm ',
↪→ verbose=True)

Perform the anomaly detection

results_series = anomaly_detector.apply(series_inference ,

↪→ index_bounds=['max_err ', 'adherence/10e20 '],
↪→ multivariate_index_strategy='max', verbose=True)

return results_series

To be noted that such snippet can be easily modified to run the anomaly

detection in an online fashion, by dropping the fit part and instead loading

the anomaly detectors with ModelBasedAnomlayDetector.load(), provided

that they where first saved somewhere after the fit phase. In this case, the

series_inference would be the series corresponding to the model window.

106

Given the intrinsic impossibility of validating the anomalies due to the lack

of a ground truth, anomaly detection results are reported mainly as qualitative

observations. More in detail, anomalies were divided the anomalies in two main

classes: trivial and nontrivial, for each of which some examples are reported.

Trivial anomalies

Such anomalies are trivial in the sense that they could have been probably

spotted with simpler and more classical methods than DL. However, model-

based anomaly detection, and in particular using DL, allows to detect them

without manually setting any priors. Moreover, thanks to the anomaly index,

an estimate about how “certain” such anomalies are is also available. In par-

ticular, trivial anomalies all show a maximum anomaly index of 1, meaning

that at least a portion in each of them was considered as certainly anomalous

by the proposed methodology. Some some examples with their descriptions are

provided in Figures 6.11, 6.12 and 6.13.

Figure 6.11: Example trivial anomaly #1. Combined (top), and with breakdown (bottom).
Pressure rescaled for readability

In Figure 6.11, the anomaly is due to a sensor issue. Both quantities do not

reach exactly zero, but they stop slightly above. This event has a maximum

anomaly index of 1 and an average anomaly index of 1 as well: it is a certain

anomaly. Both the correlation-based and the pattern-based models equally

detected it. To be noted that the peak slight before this event has not been

marked as anomalous, even if it deviates from the baseline of about the same,

probably because i) such peaks were present in the training data as well and

ii) the correlation does not break.

107

Figure 6.12: Example trivial anomaly #3. Combined (top), and with breakdown (bottom).
Pressure rescaled for readability

In Figure 6.12, the anomaly is instead due to a temporary closure of a part

of the WDS due to repair work. Interestingly, the first half was spotted by the

pattern-based model, that then “adapted” to the low flow rate value, while the

second half was spotted by the correlation-based model, probably due to the

changed dynamic between the two quantities. This event a has a maximum

anomaly index of 1 and an average anomaly index of 0.42: some parts of the

event were certainly anomalous, but not all of it.

Figure 6.13: Example trivial anomaly #3. Combined (top), and with breakdown (bottom).
Pressure rescaled for readability

108

In Figure 6.13, the anomaly is instead not (yet) explained, and it is currently

under investigation by domain experts. It has has a maximum anomaly index

of 1 and an average anomaly index of 0.42. It was mainly spot by the pattern-

based model, which makes it a suspect malfunction or unreported closure of

this section of the WDS.

Nontrivial anomalies

Nontrivial anomalies are more subtle, complex anomalies usually showing a

maximum anomaly index lower than 1. In order to spot them without largely

increase false positives rates, more sophisticated modeling is required, and is

thus where model-based anomaly detection using DL can show its advantages.

Nontrivial anomalies are often early-warning signs of a macroscopic anomaly

on the way, and for this reason they are very precious: spotting them allows to

react proactively. Example of such (rare) anomalies are provided in Figures 6.14

and 6.15, while in Figure 6.13 it is show how a portion of a time series suffering

from a light drift is not erroneously marked as anomalous, thus showing that

the propose methodology is proving robust in such circumstances.

Figure 6.14: Example nontrivial anomaly #1. Combined (top), and with breakdown (bot-
tom). Pressure rescaled for readability

In Figure 6.14, the nontrivial anomaly is the first one of the two, which

corresponds to an increase in the noise picked up by the sensors at night (the

lower parts of the spectrum). The maximum anomaly index of this event

was 0.88, while the average 0.75. It was then followed by the second (trivial)

anomaly, where the flow sensor The sensor then started to macroscopically

malfunction and had to be replaced. It has to be noted that there were even

more preliminary signals: single-data point anomalies were correctly detected

even two days earlier. However, since at last two consecutive anomalous data

points were required to mark an anomaly event, they would not have been

109

enough to trigger an alert.

Figure 6.15: Example nontrivial anomaly #2. Combined (top), and with breakdown (bot-
tom). Pressure rescaled for readability

In Figure 6.15, the anomaly is again due to a sensor malfunction, that

started to have sudden drops in the flow. The values reached by the drops

were present also in the data used as reference for the model training, but in

this case they are much more prominent and were indeed were a symptom of a

failing sensor, which then malfunctioned for months.

Lastly, Figure 6.16 shows an example of a pattern drift correctly not marked

as anomalous. This data belong to the same measurement point of the data of

the nontrivial anomaly reported in Figure 6.14, and was processed by the very

same anomaly detection model. This shows that, while it might seem that the

anomaly reported in Figure 6.14 was only detected because of the values in the

lower part of the spectrum approaching zero, it was actually detected because

of the variations of such values. Figure 6.16 shows indeed that, after the drift,

values in the lower part approach (and reach) similar values as in Figure 6.14,

but nothing is marked as anomalous.

Figure 6.16: Example of a pattern drift correctly not marked as anomalous.

110

Chapter 7

Conclusions

Detecting anomalies is not a simple task. It is an ill-defined problem that

spans several aspects, from technical challenges trough domain experience to

deep philosophical questions as “what is normality”?

There is no ground truth about anomalies, which to be rightfully classi-

fied as such require to be truly new, unseen events: to some extent, detecting

anomalies requires to quantify the unknown. For this reason, testing anomaly

detection methods on “known” anomalies, even if using one of the few bench-

marking datasets reasonably well-designed, risks to introduce bias, over-fitting

and over-tuning, while providing limited to no informative power about how a

given methodology will perform in front of real-world, new anomalies.

In the context of critical systems, where anomaly alerts can trigger high-

priority operator responses or investigation, this is a major issue that has to

be accounted for. Providing clear and reliable indications about the potential

anomalies and their severity to the operators is indeed one of the main chal-

lenges, together with performing the detection in a timely manner, usually in

real-time or near real-time.

Moreover, sensor-based critical systems often operate in harsh conditions

and under strict operational requirements, which raise extra challenges with

respect to the data quality, the resilience required by the anomaly detection

processes, and the robustness of the algorithms.

This thesis work aimed at addressing such challenges by first questioning

the very meaning of what anomalies represent, and then proposing a method-

ological framework to perform robust anomaly detection in this context.

Such framework was implemented in a novel time series processing library:

Timeseria. Developed in Python following an object-oriented paradigm and

a set of software development best practices as modularization, unit testing

and containerization to ensure portability and reproducibility, Timeseria was

designed to make it easier to manipulate time series data and to build statistical

and machine learning models on top of it, ensuring a high level of consistency.

Then, the proposed methodological framework was tested on a real real-

world case study in the Water Distribution Systems (WDS) domain. As a core

part of modern city infrastructures, WDS provide constant water flow from

111

facilities like treatment plants and wells to the final users, and involve many

components that are subject to potential failures, such as pipes, valves, pumps,

storage tanks, and more.

A leakage in a WDS underground pipe that goes unnoticed does not only

means wasting a precious resource as water is, but can also cause erosion to

the point of creating voids in the above terrain. If such erosion occur in a

urban context, roads can collapse and building foundations can shift, posing a

severe risk to the population. In case of sudden breakages instead, part of the

buildings in the surroundings can be left without water, which is particularly

problematic should one of these buildings be a critical infrastructure itself, as

an hospital.

The case study considered in this thesis work consisted of 14 nodes of a

WDS in the Friuli Venezia Giulia region, in northern Italy. The dataset com-

prised flow rate and pressure sensor measurements for each node, sampled

at six-minute intervals. The dataset showed several data losses, all detected

and marked as such with the Timeseria library, which was used for both data

pre-processing and to perform the anomaly detection using a model-based ap-

proach.

Several models have been considered, and the choice fell on a set of deep

learning models, because of their ability to capture complex nonlinear depen-

dencies. Within the deep learning models suitable for time series forecasting,

the best compromise was to use a Long Short Term Memory (LSTM) neural

network. In order to capture both the intrinsic correlation between the pressure

and the flow rate and their typical patterns in a separate way, an ensemble of

two types of models has been used. The first was trained to predict the value

for the next time step given only a window of past data (the previous 24 hours),

in order to capture the patterns. The second was instead trained in order to

capture the correlations. More in detail, such model was trained to predict the

value of a target quantity (e.g. flow rate) at the next step given the contextual

data at the same next time step (e.g. pressure). It also used a much smaller

window of past data (of 1 hour) to give some context to the model but not

enough to capture any pattern.

This case study showed how the methodology proposed in this thesis work

can be applied in a real-world scenario in order to perform robust anomaly

detection in the context of sensor-based critical systems, in an end-to-end fash-

ion. The anomaly index defined according to the proposed methodology allowed

differentiating the anomalies based on their magnitude, thus providing a clear

indication about their severity.

The results provided (besides model accuracies) are mainly qualitative,

given the lack of ground truth about anomalies, and reported that trivial

anomalies (as planned pipe closures) could all be successfully identified with

great confidence, while some more subtle and nontrivial anomalies, often symp-

toms of upcoming issues as sensor failures, could be identified as well.

Lastly, no significant false positives were found: all of the detected anomalies

were of interest for the domain experts involved in the process, which was one of

112

the main goals of this thesis work. This was made possible by making the pro-

posed methodology robust by design: despite the several data losses, they were

all correctly handled both in the model training and inference phases, without

capturing distorted patterns or performing unreliable predictions. Moreover,

optimizing the models not only for the average error but also for a contained

maximum error, and targeting a convenient error distribution, allowed to pose

a solid basis on which to calibrate the anomaly index. This in turn allowed to

obtain clear and reliable indications about the absolute degree of suspicion of

the potential anomalies.

Future directions include several paths. The model selection process can

be improved, starting by tuning hyperparameters on a per-series basis rather

that for the overall dataset. Also the error modeling can be improved, for

example the Timeseria library could be modified in order to support multi-

modal or asymmetric error distributions, although the implications of accepting

an asymmetric error have to be carefully considered.

The anomaly index could be further developed to work on joint error prob-

abilities over a given prediction horizon rather than punctual ones, or to take

into account the cumulative error, should the use-case allow for some lag in the

anomaly detection.

Adding extra modeling (e.g. pattern recognition) for capturing “known”

and potentially unpredictable rare events (as high-demand events in WDS)

could help in improving the methodology even further, given that it could be

used to exclude such events both when computing the error distribution of the

models and in the detection phase. Also in this scenario the lag that would be

introduced (a pattern requires to be formed before it can be detected) has to be

taken into account, and its applicability thus depends on the type of patterns

involved and on how stringent the “timely” requirement is. However, it looks

like a promising path.

Lastly, the methodology proposed in this thesis work could be evolved to

work with models capable of predicting probability distributions rather than

punctual values, as Bayesian models, probabilistic neural networks, and gener-

ative models.

113

Bibliography

[1] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Unsu-

pervised real-time anomaly detection for streaming data. Neurocomputing,

262:134–147, 2017.

[2] Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider,

Valentin Flunkert, Jan Gasthaus, Tim Januschowski, Danielle C Maddix,

Syama Sundar Rangapuram, David Salinas, Jasper Schulz, et al. Gluonts:

Probabilistic and neural time series modeling in python. J. Mach. Learn.

Res., 21(116):1–6, 2020.

[3] Sarah Alnegheimish, Dongyu Liu, Carles Sala, Laure Berti-Equille, and

Kalyan Veeramachaneni. Sintel: A machine learning framework to extract

insights from signals. In Proceedings of the 2022 International Conference

on Management of Data, SIGMOD ’22, page 1855–1865. Association for

Computing Machinery, 2022.

[4] Mozafar Ansari, Faridah Othman, Taher Abunama, and Ahmed El-Shafie.

Analysing the accuracy of machine learning techniques to develop an in-

tegrated influent time series model: case study of a sewage treatment

plant, malaysia. Environmental Science and Pollution Research, 25:1–11,

04 2018.

[5] ARERA. Annual report on the state of services and regulatory activity,

2021.

[6] Kevin Ashton et al. That ‘internet of things’ thing. RFID journal,

22(7):97–114, 2009.

[7] Filipe Assunção, Nuno Lourenço, Penousal Machado, and Bernardete

Ribeiro. Denser: deep evolutionary network structured representation.

Genetic Programming and Evolvable Machines, 20:5–35, 2019.

[8] Filipe Assunção, Nuno Lourenço, Bernardete Ribeiro, and Penousal

Machado. Fast-denser: Fast deep evolutionary network structured rep-

resentation. SoftwareX, 14:100694, 2021.

[9] Christopher M Bishop. Pattern recognition and machine learning. Springer

google schola, 2:1122–1128, 2006.

114

[10] Ane Blázquez-Garćıa, Angel Conde, Usue Mori, and Jose A Lozano. A

review on outlier/anomaly detection in time series data. ACM computing

surveys (CSUR), 54(3):1–33, 2021.

[11] Antonio Candelieri. Clustering and support vector regression for water

demand forecasting and anomaly detection. Water, 9(3), 2017.

[12] Miguel Capelo, Bruno Brentan, Laura Monteiro, and Dı́dia Covas. Near-

real time burst location and sizing in water distribution systems using

artificial neural networks. Water, 13:1884, 07 2021.

[13] Caterina Capponi, Marco Ferrante, Aaron Zecchin, and James Jinzhe

Gong. Leak detection in a branched system by inverse transient analy-

sis with the admittance matrix method. Water Resources Management,

31:1–15, 10 2017.

[14] Tinkoff.ru Artificial Intelligence Center. Etna - predict your time series the

easiest way. https://github.com/tinkoff-ai/etna. Accessed: 2024-05-

12.

[15] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detec-

tion: A survey. ACM computing surveys (CSUR), 41(3):1–58, 2009.

[16] Maximilian Christ. Standardize time series formats. https:

//web.archive.org/web/20230124141947/https://github.com/

MaxBenChrist/awesome_time_series_in_python/blob/master/

standardize_time_series_formats.md, 2021. Accessed: 2023-01-

24.

[17] Symeon E. Christodoulou, Elena Kourti, and Agathoklis Agathokleous.

Waterloss Detection in Water Distribution Networks using Wavelet

Change-Point Detection. Water Resources Management: An Interna-

tional Journal, Published for the European Water Resources Association

(EWRA), 31(3):979–994, February 2017.

[18] Andrea Cominola, K. Nguyen, Matteo Giuliani, Rodney Stewart, Holger

Maier, and Andrea Castelletti. Data mining to uncover heterogeneous

water use behaviors from smart meter data. Water Resources Research,

55, 11 2019.

[19] European Commission, Content Directorate-General for Communica-

tions Networks, Technology, and G Anzaldi Varas. Digital single market

for water services action plan : final report. Publications Office, 2020.

[20] Andrew A Cook, Göksel Mısırlı, and Zhong Fan. Anomaly detection for iot

time-series data: A survey. IEEE Internet of Things Journal, 7(7):6481–

6494, 2019.

[21] Paul SP Cowpertwait and Andrew V Metcalfe. Introductory time series

with R. Springer Science & Business Media, 2009.

115

[22] Enrico Creaco, Giacomo Galuppini, Alberto Campisano, and Marco Fran-

chini. Bottom-up generation of peak demand scenarios in water distribu-

tion networks. Sustainability, 13(1):1–18, 2021.

[23] Axel Daneels and Wayne Salter. What is scada? 1999.

[24] Nhu Do, Angus Simpson, Jochen Deuerlein, and Olivier Piller. Calibra-

tion of water demand multipliers in water distribution systems using ge-

netic algorithms. Journal of Water Resources Planning and Management,

142:04016044, 06 2016.

[25] Meftah Elsaraiti and Adel Merabet. A comparative analysis of the arima

and lstm predictive models and their effectiveness for predicting wind

speed. Energies, 14(20):6782, 2021.

[26] facebook Research. Kats - a one stop shop for time series analysis

in python. https://web.archive.org/web/20221004032627/https://

github.com/facebookresearch/Kats, 2021. Accessed: 2023-01-06.

[27] Zahra Fereidooni, Hooman Tahayori, and Ali Bahadori-Jahromi. A hybrid

model-based method for leak detection in large scale water distribution

networks. Journal of Ambient Intelligence and Humanized Computing, 12,

02 2021.

[28] Diana Fiorillo, Giacomo Galuppini, Enrico Creaco, F. Paola, and Mau-

rizio Giugni. Identification of influential user locations for smart meter

installation to reconstruct the urban demand pattern. Journal of Water

Resources Planning and Management, 146:04020070, 06 2020.

[29] S. Fiorindo, L. Zovatto, L. Falcomer, Murari E., and Zanello F. Automatic

optimization of the water supply networks segmentation. 2018.

[30] Caspar Geelen, Doekle Yntema, Jaap Molenaar, and Karel Keesman. Mon-

itoring support for water distribution systems based on pressure sensor

data. Water Resources Management, 33, 08 2019.

[31] Paul Goodwin and Richard Lawton. On the asymmetry of the symmetric

mape. International journal of forecasting, 15(4):405–408, 1999.

[32] Frank E Grubbs. Procedures for detecting outlying observations in sam-

ples. Technometrics, 11(1):1–21, 1969.

[33] Douglas M Hawkins. Identification of outliers, volume 11. Springer, 1980.

[34] Julien Herzen, Francesco LÃ¤ssig, Samuele Giuliano Piazzetta, Thomas

Neuer, LÃ©o Tafti, Guillaume Raille, Tomas Van Pottelbergh, Marek

Pasieka, Andrzej Skrodzki, Nicolas Huguenin, Maxime Dumonal, Jan

KoÅcisz, Dennis Bader, FrÃ©dÃ©rick Gusset, Mounir Benheddi,

Camila Williamson, Michal Kosinski, Matej Petrik, and GaÃl Grosch.

Darts: User-friendly modern machine learning for time series. Journal of

Machine Learning Research, 23(124):1–6, 2022.

116

[35] Mike Hinchey and Lorcan Coyle. Evolving critical systems: A research

agenda for computer-based systems. In 2010 17th IEEE International

Conference and Workshops on Engineering of Computer Based Systems,

pages 430–435. IEEE, 2010.

[36] Reza Hosseini, Albert Chen, Kaixu Yang, Sayan Patra, Yi Su, Saad Eddin

Al Orjany, Sishi Tang, and Parvez Ahammad. Greykite: Deploying flexible

forecasting at scale at linkedin. In Proceedings of the 28th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining, pages 3007–3017,

2022.

[37] Mashor Housh and Avi Ostfeld. An integrated logit model for contam-

ination event detection in water distribution systems. Water Research,

75:210–223, 2015.

[38] Stephan Hoyer and Joe Hamman. xarray: Nd labeled arrays and datasets

in python. Journal of Open Research Software, 5(1), 2017.

[39] Piao Hu, Jun Tong, Jingcheng Wang, Yue Yang, and Luca

de Oliveira Turci. A hybrid model based on cnn and bi-lstm for urban

water demand prediction. In 2019 IEEE Congress on evolutionary com-

putation (CEC), pages 1088–1094. IEEE, 2019.

[40] Zukang Hu, Wenlong Chen, Helong Wang, Pei Tian, and Dingtao Shen.

Integrated data-driven framework for anomaly detection and early warning

in water distribution system. Journal of Cleaner Production, 373:133977,

2022.

[41] Pingjie Huang, Naifu Zhu, Dibo Hou, Jinyu Chen, Yao Xiao, Jie Yu,

Guangxin Zhang, and Hongjian Zhang. Real-time burst detection in dis-

trict metering areas in water distribution system based on patterns of

water demand with supervised learning. Water, 10(12), 2018.

[42] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Col-

well, and Tom Soderstrom. Detecting spacecraft anomalies using lstms

and nonparametric dynamic thresholding. In Proceedings of the 24th ACM

SIGKDD international conference on knowledge discovery & data mining,

pages 387–395, 2018.

[43] Vincent Jacob, Fei Song, Arnaud Stiegler, Bijan Rad, Yanlei Diao, and

Nesime Tatbul. Exathlon: A benchmark for explainable anomaly detection

over time series. arXiv preprint arXiv:2010.05073, 2020.

[44] Hoon Kang, Seunghyeok Yang, Huang Jianying, and Jeill Oh. Time series

prediction of wastewater flow rate by bidirectional lstm deep learning.

International Journal of Control, Automation and Systems, 18:3023–3030,

12 2020.

[45] Eamonn Keogh, Jessica Lin, Sang-Hee Lee, and Helga Van Herle. Finding

the most unusual time series subsequence: algorithms and applications.

Knowledge and Information Systems, 11:1–27, 2007.

117

[46] Einat Kermany, Hanna Mazzawi, Dorit Baras, Yehuda Naveh, and Ha-

gai Michaelis. Analysis of advanced meter infrastructure data of water

consumption in apartment buildings. In Proceedings of the 19th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’13, page 1159–1167, New York, NY, USA, 2013. Associ-

ation for Computing Machinery.

[47] Deborah Khider, Feng Zhu, and Yolanda Gil. autots: Automated machine

learning for time series analysis. In AGU Fall Meeting Abstracts, volume

2019, pages PP43D–1637, 2019.

[48] HuaMing Huang Kishan G. Mehrotra, Chilukuri K. Mohan. Anomaly

Detection Principles and Algorithms. Springer, 2017.

[49] Krzysztof Kotowski, Christoph Haskamp, Jacek Andrzejewski, Bogdan

Ruszczak, Jakub Nalepa, Daniel Lakey, Peter Collins, Aybike Kolmas,

Mauro Bartesaghi, Jose Martinez-Heras, et al. European space agency

benchmark for anomaly detection in satellite telemetry. arXiv preprint

arXiv:2406.17826, 2024.

[50] Christian Kühnert, Naga Mamatha Gonuguntla, Helene Krieg, Dimitri

Nowak, and Jorge A Thomas. Application of lstm networks for water

demand prediction in optimal pump control. Water, 13(5):644, 2021.

[51] Daesoo Lee, Sara Malacarne, and Erlend Aune. Explainable time se-

ries anomaly detection using masked latent generative modeling. Pattern

Recognition, 156:110826, 2024.

[52] Mingfeng Lin, Henry C Lucas Jr, and Galit Shmueli. Research commentary

— too big to fail: large samples and the p-value problem. Information

systems research, 24(4):906–917, 2013.

[53] Xing Liu, Cheng Qian, William Grant Hatcher, Hansong Xu, Weixian

Liao, and Wei Yu. Secure internet of things (iot)-based smart-world criti-

cal infrastructures: Survey, case study and research opportunities. IEEE

Access, 7:79523–79544, 2019.

[54] Markus Löning, Anthony Bagnall, Sajaysurya Ganesh, Viktor Kazakov,

Jason Lines, and Franz J Király. sktime: A unified interface for machine

learning with time series. arXiv preprint arXiv:1909.07872, 2019.

[55] Engineering Services LP. Deepwater horizon blowout preventer failure

analysis report. https://www.csb.gov/assets/1/20/appendix_2_a_

_deepwater_horizon_blowout_preventer_failure_analysis1.pdf,

2014.

[56] Wes McKinney et al. pandas: a foundational python library for data anal-

ysis and statistics. Python for high performance and scientific computing,

14(9):1–9, 2011.

118

[57] Madeleine McPherson, Theofilos Sotiropoulos-Michalakakos, LD Danny

Harvey, and Bryan Karney. An open-access web-based tool to access

global, hourly wind and solar pv generation time-series derived from the

merra reanalysis dataset. Energies, 10(7):1007, 2017.

[58] Andrea Menapace, Ariele Zanfei, Manuel Felicetti, Diego Avesani, Mau-

rizio Righetti, and Rudy Gargano. Burst detection in water distribution

systems: The issue of dataset collection. Applied Sciences, 10(22), 2020.

[59] Jordi Meseguer and Joseba Quevedo. Real-Time Monitoring and Control

in Water Systems, pages 1–19. 05 2017.

[60] S. Amizadeh N. Laptev and Y. Billawala. A labeled anomaly detec-

tion dataset, version 1.0 (16m). https://webscope.sandbox.yahoo.com/

catalog.php?datatype=s&did=70, 2015.

[61] Matteo Nicolini, Carlo Giacomello, and Kalyanmoy Deb. Calibration and

optimal leakage management for a real water distribution network. Journal

of Water Resources Planning and Management, 137, 01 2011.

[62] Malte Ollenschläger, Arne Küderle, Wolfgang Mehringer, Ann-Kristin

Seifer, Jürgen Winkler, Heiko Gaßner, Felix Kluge, and Bjoern M Eskofier.

Mad gui: An open-source python package for annotation and analysis of

time-series data. Sensors, 22(15):5849, 2022.

[63] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hen-

gel. Deep learning for anomaly detection: A review. ACM computing

surveys (CSUR), 54(2):1–38, 2021.

[64] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S Tsay, Themis Pal-

panas, and Michael J Franklin. Tsb-uad: an end-to-end benchmark suite

for univariate time-series anomaly detection. Proceedings of the VLDB

Endowment, 15(8):1697–1711, 2022.

[65] Rocio Lopez Perez, Florian Adamsky, Ridha Soua, and Thomas Engel.

Forget the myth of the air gap: Machine learning for reliable intrusion

detection in scada systems. EAI Endorsed Transactions on Security and

Safety, 6(19):e3–e3, 2019.

[66] Zhang Qingzhou, Feifei Zheng, Huan-Feng Duan, Yueyi Jia, Tuqiao Zhang,

and Xinlei Guo. Efficient numerical approach for simultaneous calibra-

tion of pipe roughness coefficients and nodal demands for water distri-

bution systems. Journal of Water Resources Planning and Management,

144:04018063, 07 2018.

[67] Michele Romano, Zoran Kapelan, and Dragan Savic. Automated detection

of pipe bursts and other events in water distribution systems. Journal of

Water Resources Planning and Management, 140:457–467, 04 2014.

[68] Karen Rose, Scott Eldridge, and Lyman Chapin. The internet of things:

An overview. The internet society (ISOC), 80(15):1–53, 2015.

119

[69] Bogdan Ruszczak, Krzysztof Kotowski, Jacek Andrzejewski, Christoph

Haskamp, and Jakub Nalepa. Oxi: An online tool for visualization and

annotation of satellite time series data. SoftwareX, 23:101476, 2023.

[70] Jordi Saludes, Joseba Quevedo, and Vicenç Puig. Demand Forecasting for

Real-Time Operational Control, pages 99–111. 05 2017.

[71] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. Anomaly

detection in time series: a comprehensive evaluation. Proceedings of the

VLDB Endowment, 15(9):1779–1797, 2022.

[72] Lina Sela, Jonathan Arad, Mashor Housh, and Avi Ostfeld. Event detec-

tion in water distribution systems from multivariate water quality time

series. Environmental science technology, 46:8212–9, 06 2012.

[73] Yu Shao, Xin Li, Tuqiao Zhang, Shipeng Chu, and Xiaowei Liu. Time-

series-based leakage detection using multiple pressure sensors in water dis-

tribution systems. Sensors, 19(14), 2019.

[74] Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. A com-

parison of arima and lstm in forecasting time series. In 2018 17th IEEE

international conference on machine learning and applications (ICMLA),

pages 1394–1401. IEEE, 2018.

[75] Julien Siebert, Janek Groß, and Christof Schroth. A systematic review of

packages for time series analysis. Engineering Proceedings, 5(1):22, 2021.

[76] Adrià Soldevila, Joaquim Blesa, Sebastian Tornil-Sin, Eric Duviella,

Rosa M. Fernandez-Canti, and Vicenç Puig. Leak localization in water

distribution networks using a mixed model-based/data-driven approach.

Control Engineering Practice, 55:162–173, 2016.

[77] Sophocles Sophocleous, Dragan Savic, and Zoran Kapelan. Leak localiza-

tion in a real water distribution network based on search-space reduction.

Journal of Water Resources Planning and Management, 145, 04 2019.

[78] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei.

Robust anomaly detection for multivariate time series through stochastic

recurrent neural network. In Proceedings of the 25th ACM SIGKDD inter-

national conference on knowledge discovery & data mining, pages 2828–

2837, 2019.

[79] Congcong Sun, Benjamı́ Parellada, Vicenç Puig, and Gabriela Cembrano.

Leak localization in water distribution networks using pressure and data-

driven classifier approach. Water, 12(1):54, Dec 2019.

[80] Romain Tavenard, Johann Faouzi, Gilles Vandewiele, Felix Divo, Guil-

laume Androz, Chester Holtz, Marie Payne, Roman Yurchak, Marc

Rußwurm, Kushal Kolar, et al. Tslearn, a machine learning toolkit for

time series data. J. Mach. Learn. Res., 21(118):1–6, 2020.

120

[81] Sean J Taylor and Benjamin Letham. Forecasting at scale. The American

Statistician, 72(1):37–45, 2018.

[82] Sean J Taylor and Benjamin Letham. Forecasting at scale. The American

Statistician, 72(1):37–45, 2018.

[83] Jeroen Van Der Donckt, Jonas Van Der Donckt, Emiel Deprost, Nico-

las Vandenbussche, Michael Rademaker, Gilles Vandewiele, and Sofie

Van Hoecke. Do not sleep on traditional machine learning: Simple and

interpretable techniques are competitive to deep learning for sleep scoring.

Biomedical Signal Processing and Control, 81:104429, 2023.

[84] Jonas Van Der Donckt, Jeroen Van Der Donckt, Emiel Deprost, and Sofie

Van Hoecke. tsflex: Flexible time series processing & feature extraction.

SoftwareX, 17:100971, 2022.

[85] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is

all you need, 2017.

[86] Dennis Wagner, Tobias Michels, Florian CF Schulz, Arjun Nair, Maja

Rudolph, and Marius Kloft. Timesead: Benchmarking deep multivariate

time-series anomaly detection. Transactions on Machine Learning Re-

search, 2023.

[87] Phillip Wenig, Sebastian Schmidl, and Thorsten Papenbrock. Timeeval: A

benchmarking toolkit for time series anomaly detection algorithms. Pro-

ceedings of the VLDB Endowment, 15(12):3678–3681, 2022.

[88] Renjie Wu and Eamonn J Keogh. Current time series anomaly detection

benchmarks are flawed and are creating the illusion of progress. IEEE

transactions on knowledge and data engineering, 35(3):2421–2429, 2021.

[89] Zhou Xiao, Weirong Xu, Kunlun Xin, Hexiang Yan, and Tao Tao. Self-

adaptive calibration of real-time demand and roughness of water distribu-

tion systems. Water Resources Research, 54, 07 2018.

[90] Lu Xing and Lina Sela. Unsteady pressure patterns discovery from high-

frequency sensing in water distribution systems. Water Research, 158:291–

300, 2019.

[91] Weirong Xu, Xiao Zhou, Kunlun Xin, Joby Boxall, Hexiang Yan, and

Tao Tao. Disturbance extraction for burst detection in water distribu-

tion networks using pressure measurements. Water Resources Research,

56(5):e2019WR025526. e2019WR025526 2019WR025526.

[92] Duo Zhang, Geir Lindholm, and Harsha Ratnaweera. Use long short-

term memory to enhance internet of things for combined sewer overflow

monitoring. Journal of Hydrology, 556:409–418, 2018.

121

[93] Xiangqiu Zhang, Zhihong Long, Tian Yao, Hua Zhou, Tingchao Yu, and

Yongchao Zhou. Real-time burst detection based on multiple features of

pressure data. Water Supply, 22(2):1474–1491, 10 2021.

[94] Yue Zhao, Zain Nasrullah, and Zheng Li. Pyod: A python toolbox for scal-

able outlier detection. Journal of Machine Learning Research, 20(96):1–7,

2019.

122

