
Best practices for scientific
software development
Or how to spend less time on making things work and more
on doing science

Stefano Alberto Russo - INAF / University of Trieste

Introduction
As with everything, even in software development there is a set of best practices which
makes life easier at nearly no cost.

Interestingly enough, this set of common wisdom collected over the years of professional
software development is often ignored in academia, causing to waste massive amounts of
time which could be easily spared by just adopting the right approach and philosophy.

The seminar does not aim by any means to push scientist to become software engineers.
Instead, it wants to provide a swiss army knife in a minimum effort - maximum yield logic to
help them in everyday’s life.

We will see tools and concepts as Git and version control, testing,
debugging hints, managing dependencies, reproducibility and
more, and how to use them effectively.

Stefano Alberto Russo - INAF / University of Trieste

Why should you listen to me?
An hybrid profile:

- BSc in Computer Science

- MSc in Computational Physics

Started at CERN, as research fellow working on data analysis & Big Data

Then, 5 years in startups.

- Core team member of an IoT energy metering and analytics startup,

- Joined Entrepreneur First, Europe’s best deep tech startup accelerator

- ..and launched my own one :)

Now back into research:
- INAF and UniTS, working on resource-intensive data analysis

- adjunct prof. of computer science at University of Trieste

- plus, experienced consultant for a number of private companies

Stefano Alberto Russo - INAF / University of Trieste

The deal

1) I will use Python for the coding examples, but the concepts are 100% language-agnostic

2) Always interrupt if you have question, doubs, something not clear, curiosities. Let’s try
to keep it interactive

3) Over the talk, think about a concrete use case close to your work: we will discuss a few
at the end.

Stefano Alberto Russo - INAF / University of Trieste

Outline
● How to structure your code

○ Logic blocks and comments
○ Functions and scope
○ Objects and classes
○ Readability vs. performance
○ Sanity checks

● How to debug your code
○ Reproducibility
○ Dependencies
○ Naming variables
○ Logging
○ The Notebooks

Stefano Alberto Russo - INAF / University of Trieste

● Testing
○ End-to-end testing
○ Unit testing
○ Continuous integration

● Version control and collaboration
○ Git, commits, tags
○ Versioning strategies
○ Branching and flows
○ Documentation

● Discussion

Outline
● How to structure your code

○ Logic blocks and comments
○ Functions and scope
○ Objects and classes
○ Readability vs. performance
○ Sanity checks

● How to debug your code
○ Reproducibility
○ Dependencies
○ Naming variables
○ Logging
○ The Notebooks

Stefano Alberto Russo - INAF / University of Trieste

● Testing
○ End-to-end testing
○ Unit testing
○ Continuous integration

● Version control and collaboration
○ Git, commits, tags
○ Versioning strategies
○ Branching and flows
○ Documentation

● Discussion

How to structure your code
→ Logic blocks

Logic blocks are the base unit of your piece of code, way before functions and classes

Use them to divide the code
in portions responsible
of a specific parts

Stefano Alberto Russo - INAF / University of Trieste

How to structure your code
→ Comments

Exaggerate. Think about the future yourself reading your code in 5 years time.

Stefano Alberto Russo - INAF / University of Trieste

How to structure your code
→ Functions and scope

Functions should be always self-consistent

- Do not access external variables
- Try to always return the result
- Process in-place only if you really have to

Stefano Alberto Russo - INAF / University of Trieste

value = 5

def square():

 result = value*value

 return result

def square(value):

 result = value*value

 return result

How to structure your code
→ Functions and scope

Functions should be always self-consistent

- Do not access external variables
- Try to always return the result
- Process in-place only if you really have to

Stefano Alberto Russo - INAF / University of Trieste

result = None

def square(value, result):

 result = value*value

def square(value):

 result = value*value

 return result

How to structure your code
→ Functions and scope

The LEGB rule works in nearly
any programming language.

Keep it in mind!

Stefano Alberto Russo - INAF / University of Trieste

Built-
in

Global

Enclo
sin

g

Local

Modelling well the entities you have to deal with can help you a lot.

Ask yourself what you are modelling, and:

- use hierarchy and inheritance

- try not to change method interfaces
- extend them if you really have to

- keep in mind double inheritance

Stefano Alberto Russo - INAF / University of Trieste

How to structure your code
→ Objects and classes

Stefano Alberto Russo - INAF / University of Trieste

How to structure your code
→ Objects and classes

Model

Keras
Model

LSTM
Forecaster

Regression
Model

Classification
model

save()
load()

get_avg_error()

Parametric
Model

fit()

get_accuracy()

predict()

Stefano Alberto Russo - INAF / University of Trieste

How to structure your code
→ Objects and classes

Model

Keras
Model

LSTM
Forecaster

Regression
Model

Classification
model

save()
load()

get_avg_error()

Parametric
Model

fit()

get_accuracy()

predict()

fit()
predict()
get_avg_error()
save()
load()

How to structure your code
→ Readability vs. performance

Never code thinking about performance

Always try to be logically clear in what you write first.

- compute_avg() and compute_var()
vs

- compute_avg_and_var()

- compute_features() , train()
vs

- compute_features_and_train(list)

Stefano Alberto Russo - INAF / University of Trieste

How to structure your code
→ Readability vs. performance

Then, profile your code and see where you can improve it:

$ python3 -m cProfile -s tottime profiling.py

Done profiling

48567879 function calls (48557828 primitive calls) in 530.175 seconds

Ordered by: internal time

 ncalls tottime percall cumtime percall filename:lineno(function)

 4299877 87.457 0.000 150.125 0.000 datastructures.py:105(__getitem__)

10428202 50.614 0.000 50.614 0.000 {built-in method builtins.isinstance}

 2299931 30.683 0.000 134.900 0.000 datastructures.py:1494(__next__)

 2599935 26.472 0.000 39.964 0.000 __init__.py:1424(debug)

 1 22.502 22.502 479.374 479.374 transformations.py:250(process)

 4299877 21.061 0.000 21.061 0.000 {function Series.__getitem__ at 0x7fc9683ad160}

 3999910 20.135 0.000 20.135 0.000 datastructures.py:391(t)

 99997 17.895 0.000 131.834 0.001 operations.py:114(__call__)

 599992 16.965 0.000 33.056 0.000 time.py:125(dt_from_s)

 99997 14.618 0.000 307.165 0.003 transformations.py:21(_compute_new)

 2599937 13.492 0.000 13.492 0.000 __init__.py:1689(isEnabledFor)

Stefano Alberto Russo - INAF / University of Trieste

How to structure your code
→ Sanity Checks

Always ensure your working hypothesis are respected

- If you divide by n, check for n not equal to zero
- If you have to compute the derivative of an array, check it has at least two points
- If you have to read a file, check it exists first

In dynamic/duck typing context, enforce even the type checks*

- If you expect a number, ensure it is an integer or a floating point
- If you expect a name of a file, ensure it is of type string

Etc..

No global consensus on this

Stefano Alberto Russo - INAF / University of Trieste

Outline
● How to structure your code

○ Logic blocks and comments
○ Functions and scope
○ Objects and classes
○ Readability vs. performance
○ Sanity checks

● How to debug your code
○ Reproducibility
○ Dependencies
○ Naming variables
○ Logging
○ The Notebooks

Stefano Alberto Russo - INAF / University of Trieste

● Testing
○ End-to-end testing
○ Unit testing
○ Continuous integration

● Version control and collaboration
○ Git, commits, tags
○ Versioning strategies
○ Branching and flows
○ Documentation

● Discussion

How to debug your code
→ Reproducibility

Ensure your code results does NOT depend on external factors

- Internet connectivity/resources
- download them locally, always.

- Configuration files
- read them at the beginning, and then use variables

- Moon phases
- this means you are doing something wrong. Like treating a Python dictionary

as an ordered data structure (spoiler alert: it isn’t!)

- Threads (advanced stuff)
- ensure you sync them. Signals. events, etc.

Stefano Alberto Russo - INAF / University of Trieste

How to debug your code
→ Reproducibility

Stefano Alberto Russo - INAF / University of Trieste

Characterization of Leptazolines A–D, Polar Oxazolines from the Cyanobacterium Leptolyngbya
sp., Reveals a Glitch with the “Willoughby–Hoye” Scripts for Calculating NMR Chemical Shifts
Jayanti et al - 2019

How to debug your code
→ Reproducibility

If using randomness:

- fix the seed

If evaluating a stochastic process:

- sample it
 → fix a set of seeds

Until your last, glorious, nobel-winning run: make your code deterministic.

Stefano Alberto Russo - INAF / University of Trieste

How to debug your code
→ Reproducibility

The Ferguson model case:

“We are aware of some small non-determinisms when using multiple threads to set up the network of people and
places. This has historically been considered acceptable because of the general stochastic nature of the model.”

A team member

Stefano Alberto Russo - INAF / University of Trieste

https://github.com/mrc-ide/
covid-sim/issues/116

https://github.com/mrc-ide/covid-sim/issues/116
https://github.com/mrc-ide/covid-sim/issues/116

How to debug your code
→ Dependencies

Make sure to know what dependencies your code relies upon and FIX them.

Do not just do a:

pip install keras numpy tensorflow scikit-learn

Instead:

pip install Keras==2.7.0 numpy==1.21.4 scikit-learn==1.0.1

You then might use different dependencies in some contexts,
but ensure you have a set of versions known as working.

Stefano Alberto Russo - INAF / University of Trieste

How to debug your code
→ naming

Variables
- t vs temperature
- a0 vs first_element_first_row

Functions
- compute() vs compute_monthly_averages()

Classes
- Model vs KerasLSTMOptimizedModel

p.s. in Python, variables and class instances always
lowercase_with_underscores, classes CamelCase.

Stefano Alberto Russo - INAF / University of Trieste

How to debug your code
→ logging

Logging must be verbose and give as much context as possible:

- Error

vs
- Cannot convert element #32 of the list of type "str" and value "ciao"

Logging levels (if using the logging modules)

- CRITICAL is for errors which crash the entire program
- ERROR is for errors you can deal with
- WARNING is for particular conditions to be notified
- INFO is for giving informations about the execution
- DEBUG is for debug messages

Stefano Alberto Russo - INAF / University of Trieste

How to debug your code
→ the Notebooks

The Jupyter/R Notebooks are a big source of issues.

1) They allow for unordered execution

2) They have tons and tons of hidden state that's easy to screw up and difficult to
reason about

3) For beginners, with dozens of cells and more complex code, this is utterly
confusing

2) and 3) are by Joel Grus

Stefano Alberto Russo - INAF / University of Trieste

How to debug your code
→ the Notebooks

Joel Grus - I don’t Like Notebooks @ PyCon2018

- https://docs.google.com/presentation/d/1n2
RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL
4ffI/edit#slide=id.g38857eff70_0_4

- Will teach you everything you need to know
about what can go wrong in Notebooks

- Plus, presentation has Smurfs

Stefano Alberto Russo - INAF / University of Trieste

https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit#slide=id.g38857eff70_0_4
https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit#slide=id.g38857eff70_0_4
https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit#slide=id.g38857eff70_0_4

How to debug your code
→ the Notebooks

Stefano Alberto Russo - INAF / University of Trieste

The best thing we can do for now:

ALWAYS

Outline
● How to structure your code

○ Logic blocks and comments
○ Functions and scope
○ Objects and classes
○ Readability vs. performance
○ Sanity checks

● How to debug your code
○ Reproducibility
○ Dependencies
○ Naming variables
○ Logging
○ The Notebooks

Stefano Alberto Russo - INAF / University of Trieste

● Testing
○ End-to-end testing
○ Unit testing
○ Continuous integration

● Version control and collaboration
○ Git, commits, tags
○ Versioning strategies
○ Branching and flows
○ Documentation

● Discussion

Testing
→ what is testing?

- How would you test a pen?

Stefano Alberto Russo - INAF / University of Trieste

Testing
→ what is testing?

- How would you test a pen?

- How would you test the sum function?

Stefano Alberto Russo - INAF / University of Trieste

Testing
→ what is testing?

- How would you test a pen?

- How would you test the sum function?

- How would you test a forecasting model?

Stefano Alberto Russo - INAF / University of Trieste

Testing
→ what is testing?

- How would you test a pen?

- How would you test the sum function?

- How would you test a forecasting model?

- How would you test a database connection module?

Stefano Alberto Russo - INAF / University of Trieste

Testing
→ End to end testing

- Test the behaviour of a big entity (i.e. your entire code) from one end to the other.

- If the test fails, it does not tell you where you screwed up.

→ But it is like having a seat belt fasten, and comes nearly for free.

Stefano Alberto Russo - INAF / University of Trieste

Code OutputKnown
Input

Known
Output ?

Testing
→ End to end testing

Always create at least one end-to-end testing.

It can be a shell script, a Jupyter Notebook, whatever: we are not picky.

But do it. Like, tomorrow.

Stefano Alberto Russo - INAF / University of Trieste

Testing
→ End to end testing

Always create at least one end-to-end testing.

It can be a shell script, a Jupyter Notebook, whatever: we are not picky.

But do it. Like, tomorrow.

Stefano Alberto Russo - INAF / University of Trieste

Ciao Ste. Volevo dirti che grazie a come mi hai istruita sulla
costruzione dei programmini (modularità, testing eccetera)
sono sopravvissuta indenne all'aggiornamento di sistema
delle workstation SISSA.

Mi è bastato cambiare due righe e reinstallare una cosa e
runnare il test per vedere se funzionava tutto

🎉🎉🎉🎉🎉🎉 My Sister

Testing
→ Unit testing

- Test the behaviour of all the single entities (unit) of a bigger one (i.e. your code)

- If a test fails, it will tell you exactly where you screwed up.

→ But unit-testing requires more effort and a testing suite.

Stefano Alberto Russo - INAF / University of Trieste

sum()
function OutputKnown

Input
Known
Output ?

Solver
object OutputKnown

Input
Known
Output ?

…

Testing
→ Continuous integration

Continuous integration allows to automatically perform one or more tests every time a
codebase changes. It stays for to “continuously integrating” changes (relying on testing).

Stefano Alberto Russo - INAF / University of Trieste

Testing
→ Continuous integration

Continuous integration allows to automatically perform one or more tests every time a
codebase changes. It stays for to “continuously integrating” changes (relying on testing).

Stefano Alberto Russo - INAF / University of Trieste

Outline
● How to structure your code

○ Logic blocks and comments
○ Functions and scope
○ Objects and classes
○ Readability vs. performance
○ Sanity checks

● How to debug your code
○ Reproducibility
○ Dependencies
○ Naming variables
○ Logging
○ The Notebooks

Stefano Alberto Russo - INAF / University of Trieste

● Testing
○ End-to-end testing
○ Unit testing
○ Continuous integration

● Version control and collaboration
○ Git, commits, tags
○ Versioning strategies
○ Branching and flows
○ Documentation

● Discussion

Version control and collaboration
→ Git, commits and tags

Git is the versioning system de-facto standard for modern development.

Invented by Linus Torvalds for developing the Linux Kernel, after he got enough with
versioning systems not working properly

Saving files in Git means to “commit” them, and to generate hashes

Stefano Alberto Russo - INAF / University of Trieste

Codebase status @ hash d4ee02a

Codebase status @ hash 84c909f

Codebase status @ hash e5fe764

Version control and collaboration
→ Git, commits and tags

Git is fully distributed, there is no centralized authority: no one assign version numbers. This
is why it works so well.

The “origin”, which is usually GitHub, is just a copy of your Git repository. Do not confuse Git
(a technology) with GitHub (a platform)

Git is fully deterministic: you cannot rewrite the history for a given hash!

And if you do it, you change all the hashes: no one can cheat, not even a bug.

Stefano Alberto Russo - INAF / University of Trieste

Version control and collaboration
→ Git, commits and tags

Tags are instead “labels”, and can be changed.

→ beware of this, as people might act “unwisely”

Stefano Alberto Russo - INAF / University of Trieste

Codebase status @ hash d4ee02a

Codebase status @ hash 84c909f

Codebase status @ hash e5fe764

v2.7.1

Version control and collaboration
→ Git, commits and tags

Tags are instead “labels”, and can be changed.

→ beware of this, as people might act “unwisely”

Stefano Alberto Russo - INAF / University of Trieste

Codebase status @ hash d4ee02a

Codebase status @ hash 84c909f

Codebase status @ hash e5fe764

Codebase status @ hash 547a1e3v2.7.1er..

Version control and collaboration
→ Git, commits and tags

Refer to hashes if you can, not on tags

..and definitely not on a default or a specific a branch, like “master” → they can change!

Stefano Alberto Russo - INAF / University of Trieste

$ git clone https://github.com/user/repo

$ git clone https://github.com/user/repo && git checkout master

$ git clone https://github.com/user/repo && git checkout v2.7.1

$ git clone https://github.com/user/repo && git checkout d4ee02a

Terrible

Better

Best

Bad

https://github.com/user/repo
https://github.com/user/repo
https://github.com/user/repo
https://github.com/user/repo

Version control and collaboration
→ Versioning strategies

- Sequential numbers
 → revision 19721

- Dates
 → Ubuntu 20.04

- Semantic versioning
 → v2.7.1

- Hashes
 → 0f68b421

Stefano Alberto Russo - INAF / University of Trieste

Version control and collaboration
→ Versioning strategies

- Sequential numbers
 → revision 19721

- Dates
 → Ubuntu 20.04

- Semantic versioning
 → v2.7.1

- Hashes
 → 0f68b421

Stefano Alberto Russo - INAF / University of Trieste

Given a version number MAJOR.MINOR.PATCH, increment the:

MAJOR version when you make incompatible API changes,

MINOR version when you add functionality in a backwards
compatible manner, and

PATCH version when you make backwards compatible bug fixes.

https://semver.org/

p.s. v1.0.0 is as soon as someone starts using your software!

https://semver.org/

Version control and collaboration
→ Branching and flows

“A branching strategy refers to the strategy a software development team employs when
writing, merging, and shipping code in the context of a version control system like Git.”

https://launchdarkly.com/blog/git-branching-strategies-vs-trunk-based-development

→ The Gitflow branching strategy is a good compromise between complexity and
effectiveness.

Stefano Alberto Russo - INAF / University of Trieste

https://launchdarkly.com/blog/git-branching-strategies-vs-trunk-based-development

Version control and collaboration
→ Branching and flows

Gitflow foresees three classes of branches:

- The main or master branch, were releases happen

- The develop branch, where features are tested

- And n feature branches, one for each feature

It allows to collaborate in small-mid teams without much merge
conflicts

it works great even if working in solo mode
https://nvie.com/posts/a-successful-git-branching-model/

Stefano Alberto Russo - INAF / University of Trieste

feature
branches

https://nvie.com/posts/a-successful-git-branching-model/

Version control and collaboration
→ Branching and flows

Pull requests adds a more powerful mode to handle flows:

- a pull request asks the maintainers to “pull” a feature

- pull requests can be accepted and merged or rejected

- if continuous integration is set up, they get automatically tested

Stefano Alberto Russo - INAF / University of Trieste

Version control and collaboration
→ Documentation

Stefano Alberto Russo - INAF / University of Trieste

A README!

Then,

Docstrings are your best friend:

If you write then as you write your code, you get the documentation for
free with tools as Sphinx

Services as readthedocs can grab your commits from GitHub and
automatically generate the documentation for you

Version control and collaboration
→ Documentation

Stefano Alberto Russo - INAF / University of Trieste

Version control and collaboration
→ Documentation

Stefano Alberto Russo - INAF / University of Trieste

Thanks!
→ Questions?

Stefano Alberto Russo - INAF / University of Trieste

stefano.russo@gmail.com

https://sarusso.github.io

https://twitter.com/stearusso

mailto:stefano.russo@gmail.com
https://sarusso.github.io
https://twitter.com/stearusso

