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Abstract

Rosetta is a science platform for resource-intensive, interactive data analysis

which runs user tasks as software containers. Built on top of a novel archi-

tecture based on framing user tasks as microservices - independent and self-

contained units - it allows to fully support custom software packages, libraries

and environments, as remote desktop and GUI applications, besides common

analysis environments as the Jupyter Notebooks. Rosetta relies on Open Con-

tainer Initiative containers, which allow for safe, effective and reproducible code

execution; can make use of a number of container engines and runtimes; and

seamlessly supports several workload management systems, thus enabling con-

tainerized workloads on a wide range of computing resources. Although devel-

oped in the astronomy and astrophysics space and applied to a number of use

cases in this community, Rosetta can virtually support any science and technol-

ogy domain where resource-intensive, interactive data analysis is required.
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1. Introduction

Data volumes are rapidly increasing in several research fields, as in bioinfor-

matics, particle physics, earth sciences, and more. Next generation sequencing

technologies, new particle detectors, advances in remote sensing techniques and

higher resolutions in general, on both the instrumental and the simulation side,

are constantly setting new challenges for data storage, processing and analysis.

Astrophysics is no different, and the upcoming generation of surveys and

scientific instruments as the Square Kilometer Array (SKA) [1], the Cherenkov

Telescope Array (CTA) [2], the Extremely Large Telescope (ELT) [3], the James

Webb Space telescope [4], the Euclid satellite [5] and the eROSITA All-Sky Sur-

vey [6] will pile up on this trend, bringing the data volumes in the exabyte-scale.

Moreover, numerical simulations, a theoretical counterpart capable of reproduc-

ing the formation and evolution of the cosmic structures of the Universe, must

reach both larger volumes and higher resolutions to cope with the large amount

of data produced by current and upcoming surveys. State of the art cosmological

N-body hydrodynamic codes (as OpenGADGET, GADGET4 [7] and RAMSES

[8]) can generate up to 20 petabytes of data out of a single simulation run, which

are required to be further post-processed and compared with observational data

[9, 10, 11, 12].

The size and complexity of these new experiments (both observational and

numerical) require therefore considerable storage and computational resources

for their data to be processed and analyzed, and possibly to adopt new ap-

proaches and architectures. High Performance Computing (HPC) clusters,

Graphical Processing Units (GPUs) and Field Programmable Gate Arrays (FP-

GAs), together with the so called “bring computing close to the data” paradigm

are thus becoming key players in obtaining new scientific results [13], not only by

reducing the time-to-solution, but also by becoming the sole approach capable

of processing datasets of the expected size and complexity.

In particular, even the last steps of the data analysis processes, which could

be usually performed on researchers’ workstations and laptops, are getting too
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resource-intensive and progressively required to be offloaded to such systems as

well.

Although capable of satisfying the necessary computing and storage require-

ments, these systems are usually hosted in dedicated, remote computing centers

and managed in order to dynamically share their resources across different users

to optimize the workload, which translates in a potentially very hard user in-

teraction.

Operating on remote and dynamically allocated computing resources can be

indeed considered as an advanced task itself, especially inexperienced users. It

requires to heavily rely on remote connections for shell and graphical access (as

SSH and X protocol forwarding), as well as to carefully plan how to locate, access

and/or transfer the data to process. Bringing along the required software can

be even more challenging, and without proper setup (in particular with respect

to its dependencies) it can not only fail to start or even compile, but also severe

reproducibility issues can arise [14].

To address these challenges, we see an increasing effort in developing the

so called Science Platforms [15, 16, 17, 18]. A science platform (SP) is an

environment designed to offer users a smoother experience when interacting

with computing and storage resources, in order to mitigate some of the issues

outlined above.

However, the ongoing efforts on developing SPs tend to focus on web-based,

integrated analysis environments built on top Jupyter Notebooks or similar

software, which while on one side make it easier to use this kind of computing

resources, on the other introduce two main drawbacks:

1. users are usually restricted to pre-defined software packages and libraries,

which besides constraining their work can also affect reproducibility, and

2. using software environments other than the web-based one built-in the

platform is particularly hard if not impossible.

Moreover, deployment options for the majority of the science platforms de-

veloped today rely on modern technologies from the IT industry (e.g. Ku-
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bernetes) and require deep integration at system-level, which is often hard to

achieve in the space of HPC clusters and data-intensive system. This is not

only because of technological factors and legacy aspects, but also because of a

generalized pushback for exogenous technologies from some parts of the HPC

community [19, 20, 21, 22].

In this paper we present a science platform which aims at overcoming these

limitations: Rosetta. Built on top of a novel architecture based on framing

user tasks as microservices - independent and self-contained units - Rosetta

allows to fully support custom software packages, libraries and environments,

including remote desktops and GUI applications, besides standard web-based

analysis environments as the Jupyter Notebooks. Its user tasks are implemented

as software containers[23], which allow for safe, effective and reproducible code

execution [24], and that in turn allows users to add and use their own software

containers on the platform.

Rosetta is also designed with real-world deployment scenarios in mind, and

thus to easily integrate with existing computing and storage resources includ-

ing HPC clusters and data-intensive systems, even when they do not natively

support containerization.

Although astronomy remains its mainstay (Rosetta has been developed in

the framework of the EU funded project ESCAPE1), Rosetta can virtually sup-

port any science and technology domain.

This paper is organized as follows. After discussing the related works (Sec-

tion 2), we give an overview of the Rosetta platform from a user prospective

(Section 3). We then discuss more in detail its architecture, implementation

and security aspects (Sections 4, 5 and 6). Next, we present the deployment

and usage scenario in a real production environment and a few use cases we are

supporting (Section 7), leaving the last section to conclusions and future work.

1ESCAPE aims to address the open science challenges shared by SKA, CTA, KM3Net,

EST, ELT, HL-LHC, FAIR as well as other pan-European research infrastructures as CERN,

ESO, JIVE in astronomy and particle physics.
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2. Related works

Over the last years, a number of interactive data analysis platforms have

been designed and developed, both in the public and private sectors.

CERN SWAN [25] is CERN’s effort to build towards the science platform

paradigm. SWAN is a new service for interactive, web-based data analysis

in the Cloud, making Jupyter Notebooks widely available on CERN computing

infrastructure together with a Dropbox-like solution for data management. As of

today, this solution does not provide support for applications other the Jupyter

Notebooks and a built-in shell terminal, does not allow using custom software

environments and requires heavy system-level integration in order to be used

on top of existent computing resources.

ESA Datalabs [26] is a science platform that, similarly to CERN SWAN,

allows users to work on ESA’s computing infrastructure using interactive com-

puting environments as Jupyter Lab and Octave (or to choose from pre-packaged

applications as TOPCAT). Datalabs is mainly focused on enabling users to gain

direct access to ESA’s datasets, it does not support using custom software en-

vironments, and it is not an open source project.

The Large Synoptic Survey Telescope (LSST) science platform [27] shows

similar efforts, defining a set of integrated web applications and services through

which the scientific community will be able to “access, visualize, subset and ana-

lyze LSST data”. The platform vision document does not mention applications

other than the Jupyter Notebooks, nor support for custom software environ-

ments, and refers to its own computing architecture.

The Agave platform [28] is an example from the biology domain and it is

presented as a “science as a service” platform for reproducible science. The

project is strongly focused on providing APIs for developers to integrate with

data and computing resources that can be managed from within Agave, but

it also provides Jupyter Notebooks and RStudio integration. It is however

somewhat orthogonal to our definition of a science platform, as it relies on a

sort of intermediate API-based integration layer.
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There are also a number of initiatives entirely focused on supporting Jupyter

Notebooks on cloud and HPC infrastructures (such as [29], [30], [31] and [32]),

which might fall in our SP definition to some extent, and in particular in As-

tronomy and Astrophysics it is worth to mention SciServer [18], Jovial [33] and

CADC Arcade [34].

Lastly, it has to be noted that the private sector is moving fast with re-

spect to resource-intensive interactive data analysis, mainly driven by the re-

cent advances in artificial intelligence and machine learning. In this context, we

wanted to cite Google Colab [35] and Kaggle Notebooks [36], which are built

around heavily customised versions of the Jupyter Notebooks, and Azure Ma-

chine Learning [37], which provides a nearly full-optional SP specifically targeted

at machine learning workflows. These platforms share similar traits, which con-

sist in the ability for the user to run a specific task using a pre-defined software

environments with the option, in some cases, to install extra software packages

and libraries at run-time. They are however not suitable for our purpose, mainly

because of their “as a service” and commercial nature.

3. Platform Overview

The Rosetta science platform is entirely designed to provide simplified ac-

cess to remote, dynamically allocated computing and storage resources without

restricting users to a set of pre-defined software packages, libraries and environ-

ments.
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Figure 1: The Rosetta science platform main page and menu

From a user prospective, Rosetta presents itself as a web application with

a web-based user interface (UI) that is shown upon user login in Figure 1.

The UI is organised in five min areas: the Software section, where to browse

for the software containers available on the platform or to add custom ones;

the Computing section, where to view the available computing resources; the

Storage section, which provides a file manager for the various data storages; the

Tasks dashboard, where to manage and interact with the user tasks, including

connecting with them and viewing their logs; and the Account pages, where to

configure or modify user credentials and access keys.

To run a typical analysis task, the user first accesses the Software section

(Figure 2) in order to choose (or add) the desired software container. If adding

a new software container, the user has to set its registry, image name, tag, the

container interface port and protocol, plus some optional advanced attributes

(Figure 3). The new container will then be listed together with the other ones

so that the can be chosen for execution.

Once the software container is chosen, the user hits the “play” button to

create a new task. The platform will then ask the user on which computing
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Figure 2: Software container selection

Figure 3: Adding a software container as user
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resource to run the task, and to set a task name. A one-time password token

is also generated, which is usually automatically handled by Rosetta and not

required to be entered manually when connecting to the task (Figure 4). For

some computing resources, extra options as the queue or partition name, CPU

cores and memory requirements can be set as well. The task is then created

and submitted.

Figure 4: New task

As soon as the task is starting up on the computing resource, a “connect”

button in the task dashboard becomes active. At this point, the user can connect

to the task with just one click: Rosetta will automatically handle all the tun-

neling required to reach the task on the computing resource where it is running,

and drop the user inside it (Figures 5, 6 and 7).

Users can transfer files to and from the data storages (and thus the tasks)

using the built-in file manager (Figure 8), which is an effective solution for

light datasets, analysis scripts, plots and results. Larger data sets are instead

supposed to be already located on a storage, either because the data repository

is located on the storage itself (in a logic of bringing the computing close to the

data) or because they have been previously staged using an external procedures.
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Figure 5: A GUI application running in Rosetta (CASA)

Figure 6: Other examples of user tasks: a

Jupyer Notebook displaying a plot, using

Numpy and Matplotlib.

Figure 7: Other examples of user tasks:

a SSH server with X forwarding and the

XCalc application.
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Figure 8: The Rosetta storage file manager

4. Architecture

Rosetta architecture is twofold. The platform architecture follows a standard

approach where a set of services implement the various functionalities, and it is

schematized in Figure 9. These comprise a web application service for the main

application logic and the web-based UI, a database service for storing internal

data and a proxy service for securing the connections. The web application ser-

vice functionalities can be further grouped in modules which are responsible for

managing the software containers, interacting with the computing and storage

resources, orchestrating the user tasks, handling user authentication and so on,

reflecting the main five areas of the UI as shown in Figure 1. In particular:

• Software functionalities allow to track the software containers available on

the platform, their settings and container registries 2;

• Computing functionalities allow to interact with both standalone and clus-

2A container registry is a place where container images are stored, which can be public

or private, and deployed both on premises or in the Cloud. Many container registries can

co-exisist at the same time.
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tered computing resources, hosted either on premises (e.g. via Openstack)

or on cloud systems (e.g. on Amazon AWS);

• Storage functionalities allow browsing and operating on local and shared

file system (as Ext4, NFS, BeeGFS);

• Task functionalities allow submitting and stopping tasks as well as viewing

their logs, by interacting with the computing resources workload manage-

ment systems (WMSs) as Slurm and Kubernetes and/or their container

engines (e.g. Docker, Singularity, Podman);

• Account functionalities provide user account and profile management in-

cluding user registration, login and logout, and support both local and

external authentication (e.g. OpenID Connect, Shibbolet).

Figure 9: Rosetta platform services architecture.

Rosetta user tasks orchestration follows a novel, microservice-oriented archi-

tecture [38] based on software containers. Microservices [39] are independent,

self-contained and self-consistent units that perform a given task, which can

range from a simple functionality (e.g. serving a file to download) to complex

computer programs (e.g. classifying images using a neural network). They

12



are interacted with using a specific interface, usually a REST API over HTTP,

which is exposed on a given port. Microservices fit naturally in the container-

isation approach, where each microservice runs in its own container, isolated

from the underlying operating system, network, and storage layers. User tasks

in Rosetta are always executed as software containers, and treated as microser-

vices. Rosetta can therefore stay agnostic with respect to the task interface,

some examples of which include the Jupyter Notebook server, a web-based re-

mote desktop or a virtual network computing (VNC) server, but also a secure

shell (SSH) server with X protocol forwarding is a perfectly viable choice.

One of the main features of this approach, where user tasks are completely

decoupled from the platform, is to make it possible for the users to add their

own software containers. There is indeed no difference between “platform” and

“user” containers, as long as they behave as a microservice. Rosetta users can

thus upload their own software containers on a container registry, add them in

the platform by setting up a few parameters (as the container image and the

interface port), and then use them for their tasks.

In order to make use of this architecture for user tasks orchestration, Rosetta

needs to be able to submit to the computing resources a container for execution,

and to know how to reach it (i.e. on which IP address).

These functionalities are standard and built-in in most modern container or-

chestrators (e.g Kubernetes), however as mentioned in the introduction Rosetta

has been designed to support even computing resources not natively supporting

containerized workloads (e.g. HPC clusters and data-intensive systems). In this

case, also depending on the WMS and container engine used, some key features

might be lacking, as full container-host filesystem isolation, network virtualiza-

tion and TCP/IP traffic routing between the containers. To work around these

missing features, Rosetta relies on an agent, which is a small software com-

ponent in charge of helping to manage the task container life cycle. Its main

features comprises setting up the environment for the container execution, man-

aging dynamic port allocation, reporting the host IP address to the platform,

and running the container itself. The agent internal logic is described more in
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detail in section 5.4.

When a container is started, its interface has to be made accessible by the

user. This is achieved first by making the interface port reachable on the internal

network between the computing resource and Rosetta, and then by exposing it

to the outside world through Rosetta itself, thus making it accessible by the

user. The first step can make use of simple TCP/IP tunnels as well as more

sophisticated techniques usually available in modern container orchestrators and

WMSs, while the second one can be accomplished either by directly exposing

the task interface as-is or by relaying on a proxy service, which also allows to

enforce access control and connection encryption.

Once tasks are executed and their interfaces made accessible, no further

operations are required, and the users can be looped in.

A diagram of this flow is presented with two examples: the first using a

WMS supporting containerized workloads with direct connection to the task

interface (Figure 10), the second using the agent to run the task container and

relaying on the proxy for connecting to the task interface (Figure 11).

Figure 10: Rosetta user task orchestration

using the computing resource WMS and

a direct connection to the task interface

through the TCP/IP tunnel.

Figure 11: Rosetta user task orchestration

using the agent and the proxy service on

top of the TCP/IP tunnel for connectiing

to the task interface.
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5. Implementation

Rosetta is built using open-source technologies, in particular Python and

the Django web framework, and released as an open source project as well3

Other technologies include HTML and JavaScript for the UI, Postgres for the

database4, Apache for the proxy. The platform services (not to be confused with

the user tasks software containers) are containerised using the Docker engine and

using Docker Compose as the default orchestrator5. Besides the web application,

database and proxy services, Rosetta includes an optional local Docker registry

service, which can be used for storing software containers locally, and a test

Slurm cluster for testing and debugging. Rosetta deployment tools provide a

set of management scripts to build, bootstrap and operate the platform and

a logging system capable of handling both user-generated and system errors,

exceptions and stack traces.

The web application functionalities are handled with a mixture of Django

object–relational mapping (ORM) models and standard Python functions and

classes. The ORM schema, which represents how the ORM models are actually

stored in the database, is summarized in Figure 12. In the following subsections

we will describe their implementation according to the grouping introduced in

section 4: Software, Computing, Storage, Tasks and Account.

5.1. Software

Software lives in Rosetta only as software containers. Software contain-

ers are represented using a Django ORM model which acts as a twin of the

“real” container, providing metadata about the container itself. Rosetta relies

on Open Container Initiative (OCI) containers, which must be stored on an

OCI-compliant registry.

The Container ORM model has a name and description fields to represent

the container on Rosetta, and a series of attributes identify its image: the

3https://www.ict.inaf.it/gitlab/exact/Rosetta
4The database service can be replaced by any other database supported by Django.
5Other orchestrators can be supported as well, e.g. Kubernetes.
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Figure 12: Rosetta Django ORM schema (excluding some minor, less relevant models as the

user profile, the login tokens, the key pairs and the custom pages).
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registry (to set on which container registry it is hosted), the image_name (to

locate it on the registry) and the image_tag (to set a specific version).

The image_arch, image_os and image_digest attributes provide instead

more fine-grained control in order to uniquely identify the image, and should

be used in production environments. A container image is indeed uniquely

identified on an OCI registry only if using, besides its name, either a triplet

of tag, architecture and OS or an image hash digest (usually generated with

SHA-256). This is because on OCI registries, multiple images can be assigned

to the same tag, in order to enable multi-OS and multi-architecture support.

Moreover, it has also to be noted that while a tag can be re-assigned, a digest

is an immutable identifier and ensures reproducibility.

Containers can be registered in Rosetta as platform containers or user con-

tainers. A platform container is not associated with a specific user and thus

available for all of them, while a user container belongs to and is accessible by a

specif user only, according to its user attribute. Containers can also be shared

with (and made accessible only to) a specific group.

An interface_port attribute lets Rosetta knows on which port the con-

tainer will expose its interface, and the interface_protocol sets the corre-

sponding protocol (e.g. HTTP, SSH, VNC etc.). The interface_transport

(defaulted to TCP/IP) can be used to cover non-standard scenarios (e.g. if

using UDP).

Since as explained in Section 4 the container interfaces are made accessible to

the outside world, they are required to be secured. For this to happen, Rosetta

allows to setup a one-time password or token at task creation-time to be used

for accessing the task interface afterwards. Task interfaces can get password-

protected in two ways: by implementing a password-based authentication at

task-level, or by delegating it to the HTTP proxy service. In the first case,

the container must be built to support this feature and must be registered on

the platform with the extra supports_interface_auth attribute set to True.

Rosetta can then forward the password or token to the container via an environ-

ment variable. Instead, if the container make use of an HTTP-based interface,
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it can delegate its access control to the HTTP proxy service, and just expose

a plain, unprotected interface over HTTP. In this case, Rosetta will setup the

proxy service in order enforce user authentication when accessing the task inter-

face, and encrypt it using SSL. Delegating the task authentication to the HTTP

proxy service is the default method for HTTP-based interfaces, since it is far

more secure than leaving the authentication to be implemented at task-level, as

it will be discussed in Section 6.

In order to support container engines missing port mapping capabilities,

Rosetta provides a mechanism to let the containers receive instructions on which

port to start their interface on. As already mentioned in Section 4, while most

industry-standard container engines can autonomously manage the TCP port

mapping between a container and its host to avoid conflicts with ports already

allocated (either by another service, by another container or by another instance

of the same container), some of them are not able to (e.g. Singularity). In this

case, the Rosetta agent can provide a specific port to the container where to

make its interface listening on, which is chosen between the free ephemeral ports

of the host and passed to the container via an environment variable. To let

Rosetta (and the agent) know that a given container supports this mechanism,

its extra attribute supports_custom_interface_port must be set to True (and

the interface_port attribute is then discarded).

Rosetta comes with a number of a base containers for GUI applications,

generic remote desktops and Jupyter Notebooks which can be easily extended

to suit several needs:

• JupyterNotebook, the official Jupyter Notebook container extended to

support custom interface ports;

• GUIApplication, a container built to run a single GUI application with

no desktop environment;

• MinimalDesktop, a desktop environment based on Fluxbox where more

than one application can be run in parallel;
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• BasicDesktop, a desktop environment based on Xfce for tasks requiring

common desktop features as a file manager and a terminal.

The GUIApplication and Desktop containers make use of KasmVNC, a web-

based VNC client built on top of modified versions of TigerVNC and NoVNC

which provides seamless clipboard sharing between the remote application or

desktop and the user’s local desktop environment, as well as supporting dynamic

resolution changes in order to always fit the web browser window, that are

essential features in the everyday use.

5.2. Computing

Computing resources are divided in two main types: standalone and clusters.

The first ones may or may not have a WMS in place, while the second ones

always does. If the computing resource have no WMS, the task execution is

synchronous, otherwise the execution is asynchronous and the tasks are queued.

The Django ORM model class used to represent the computing resources is

named Computing, and it includes a type, a name and a description fields for

identifying them within Rosetta. A set of specific attributes describe how to

access a computing resource and submit user tasks: the access_mode attribute

specifies how the computing resource is accessed (i.e. over SSH, using a com-

mand line interface (CLI), or a set of APIs); the auth_mode attribute specifies

how the platform gets authorized on the computing resource; the wms attribute

specifies the WMS in place (or if there is none); and the container_engine

attribute specifies which container engines (and runtimes) are available. With

respect to the container_engine attribute, if the WMS natively supports con-

tainerized workloads and there is no need of running tasks using a specific

container engine or runtime, then it can be just set to internal.

Some example combinations of these attributes are reported in Table 1,

where each row correspond to a physical computing resource. The first row rep-

resents a classic HPC cluster using Slurm as WMS and Singularity as container

engine, and requiring an accredited cluster user to submit tasks over SSH using

the Slurm command line interface. The second row represents the same cluster
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ID access_mode auth_mode wms container_engines

#1 SSH+CLI user keys Slurm Singularity

#2 SSH+CLI user keys Slurm Docker[runC,Kata],Singularity

#3 API JWT Slurm Docker,Singularity

#4 SSH+CLI user keys none Docker

#5 API platform cert. none Docker

#6 CLI platform cert. Kubernetes internal

#7 SSH+CLI platform keys Kubernetes internal

#8 API platform cert. Kubernetes internal[runC,Kata]

#9 API platform cert. Fargate internal

Table 1: Computing resource attributes combination examples, by computing resource.

but supporting, besides Singularty, also the Docker engine with both runC and

Kata runtimes, in order to allow Rosetta (or its users) to chose the best one

for a given task. The third row represents yet the same cluster but accessed

over Slurm REST APIs using JSON web tokens (JWT) for authentication. The

fourth and fifth rows represent instead standalone computing resources, using

the Docker container engine, and accessed using SSH as a standard user for

the fourth and the Docker REST APIs with a platform certificate for the fifth.

The sixth, seventh and eight rows all use computing resources managed with

Kubernetes. In the sixth and seventh the container engine is just set to “inter-

nal”, while in the eight the container runtimes available within Kubernetes are

explicitly stated. The last row is instead an example using Fargate, an hosted

container execution service from Amazon Web Services (AWS) built on top of

their Elastic Container Service (ECS), and accessed using its APIs. The imple-

mentation work to support all the combinations of access and authentication

modes, container engines and WMSs is still ongoing, but we wanted to lie down

a general framework in order to easily expand the platform in future

The Computing model describes the computing resource architectures as

well, and in particular the arch attribute defines the native architecture (e.g.
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amd64, arm64/v8), the supported_archs attribute lists extra supported archi-

tectures (e.g. 386 on amd64 architectures) and the emulated_archs attribute

lists the architectures that can be emulated.

Computing resources can be also assigned to a specific group of users, using

the group attribute which, if set, restricts access to the group members only,

and the conf attribute can be used to store some computing resource-specific

configurations (e.g. the host of the computing resource). Lastly, the Computing

ORM model implements an additional manager property which provides com-

mon functionalities for accessing and operating on the real computing resource,

as submitting and stopping tasks, viewing their logs, and executing generic

commands. This property is implemented as a Python function which upon in-

vocation instantiates and returns an object sub-classing the ComputingManager

class, based on the computing resource type, access_mode, auth_mode and wms

attributes.

A particular role play SSH-based computing resources, which as mentioned

above are accessed using standard SSH either on behalf of the user signed into

Rosetta (using its account on the computing resource) or on behalf of the plat-

form itself. In order to access on behalf of the user, Rosetta generates a dedicated

private/public key pair, and the user is required to add its Rosetta public key on

the computing resource. To instead allow accessing on behalf of the platform, a

new account and key pair are required to be setup on the computing resource.

This specific class of computing resources require no integration at all with the

existent infrastructure, provided that standard SSH access is available and a

container engine is installed. For this reason, it perfectly fits our requirement

of operating on HPC cluster and data-intensive systems where a system-level

integration is hard to achieve.

5.3. Storage

Storage functionalities provide a way of defining, mounting and browsing

data storages. A Storage is defined by a set of attributes, which include a

name, a type, an auth_mode and an access_mode. If a storage is attached to
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a computing resource, then the computing attribute can be set. In this case,

if the storage and the computing resource share the same access mode, the

access_through_computing option can be ticked so that Rosetta can just use

the computing resource one. The group attribute, if set, specifies the set of users

authorized to access the storage. The base_path attribute sets the internal path

to the storage, and supports using two variables: the $USER, which is substituted

with the Rosetta internal user name, and the $SSH_USER, which is substituted

with the SSH username (if the access method is based on SSH). The bind_path

sets instead where the storage is made accessible within the software containers.

If a data storage is attached to a computing resource and its bind_path is

set, it will be then made accessible from all of the containers running on that

computing resource, under the location specified by the bind_path.

For example, a storage mounted on the /data mount point of an SSH-based

computing resource (and represented in Rosetta using generic_posix as type

and SSH+CLI as access method) could have a base_path set to /data/users/$USER

and a bind_path set to /storages/user_data, in order to separate data be-

longing to different users at orchestration-level.

Storage functionalities also include a set of APIs to provide support for the

file manager embedded in the Rosetta web-based UI, which is built on top of the

Rich File Manager 6 open source project. These APIs implement common func-

tionalities (as get, put, dir, rename etc.) to perform file management operations,

the internal logic of which depends on the storage type.

5.4. Tasks

Tasks are represented using an ORM model and a set of states (queued,

running or stopped). Tasks running on computing resources without a WMS

are directly created in the running state, while when a WMS is in place they

are created in the queued state and set to as running only when they get ex-

ecuted. States are stored in the state attribute of the Task model, which

6https://github.com/psolom/RichFilemanager

22



also includes a name and the links with the software container and the com-

puting resource executing the task, plus its options (the container, computing

and computing_options attributes, respectively). A set of other attributes

as the interface_ip, interface_port, tcp_tunnel_port and auth_token let

Rosetta know how to instantiate the connection to the task (i.e. if to set up the

tunnel and/or to configure a proxy service).

Once a task starts on a computing resource, its IP address and port are saved

in the corresponding Task fields and it is marked as running. If the task was

queued, an email is sent to the user with a link to the task, which is particularly

useful to let users immediately know when their tasks are ready, thus preventing

to waste computing time. Task functionalities also include opening the TCP/IP

tunnel to the task interface port and/or configuring the HTTP proxy service in

order to provide access to the task interface.

One of the main components of the task management functionalities is the

agent, which as introduced in Section 4 allows to seamlessly support both WMSs

not natively supporting containerized workloads and container engines missing

some key features. In other words, it makes all of the computing resources

behave in the same way from a Rosetta prospective. The agent is implemented

as a Python script which is served by the Rosetta web application and that can

run both as a superuser and as a standard, unprivileged user. When it is required

for a task, Rosetta delivers a bootstrap script on the computing resource which

pulls and execute the agent code. As soon as it gets executed, the agent calls

back the Rosetta web application and communicates the IP address of its host.

If the agent landed on a computing resource using a container engine missing the

dynamic port mapping feature, it then also searches for an available ephemeral

TCP/IP port and communicates it to the web application as well. Then, the

agent sets up the environment for the user task container, and starts it.

5.5. Account

Account and profile functionalities provide support for both local and ex-

ternal authentication services (e.g. Open ID connect). The accounts linking
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between local and external identities is based on the user email address, which

is the standard approach in this kind of services.

Local and external authentication can co-exist at the same time, provided

that if a user originally singed up using an external authentication service it

will be then always required to log-in using that service. If allowing to reg-

ister as local users or to entirely rely on external authentication is up to the

administrators, and can be configured in the web application service.

Rosetta provides both user-based and group-based authorization, so that

computing and storage resources, as well as software containers, can be made

available to specific users or subsets of users only.

The user profile also supports some user-based configuration parameters for

accessing the computing resources (e.g. the computing resource username if

using an SSH-based access mode with user keys). Other minor functionalities,

as password recovery, login tokens and time zone settings are provided as well.

6. Security

Security of computing systems and web applications is a wide chapter and

an extensive discussion on the topic is beyond the scope of this article, however

we wanted to mention the main issues and how we took them into account.

The first layer of security in Rosetta consists in using software containers

for the user tasks. The base executable unit in Rosetta is indeed the container

itself, meaning that users has no control outside of their containers at all: once

a container is sent for execution and Rosetta handles all the orchestration, the

user is dropped inside it and cannot escape.

For this reason, even if a container gets compromised, all the other ones

as well as the underlying host system does not get affected. However, this

statement is true in the measure of which the container engine can guarantee

isolation and prevent privilege escalation. The Docker engine has an intrinsic

issue with this respect, as it makes use of a daemon running with superuser

privileges. Podman, a nearly drop-in replacement for Docker, runs instead in
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user-space and avoids this issue, as well as Singularity. Other container engines

as gVisor and Kata push security even further, providing respectively kernel

and hardware virtualization.

Moreover, when Rosetta is integrated on computing resources using SSH-

based access, the administrators can opt for revoking direct SSH user access on

them, leaving Rosetta - and its containerized tasks - the only access point, thus

greatly improving overall security.

As introduced in Section 4, since Rosetta user task interfaces are made acces-

sible to the outside world, they are required to be secured, both in term of access

control and connection encryption. With this respect, it is necessary to make a

distinction between HTTP-based and generic task interfaces. HTTP-based task

interfaces can rely on the authentication and SSL encryption provided by the

proxy service, and can therefore just use a plain HTTP protocol. Generic task

interfaces (e.g. a VNC or X server) are instead required to be secured at task-

level, and it is responsibility of the task container to enforce it. As explained in

subsection 5.1, access control setup is in this case achieved by forwarding to the

task a one-time password set by the user at task creation-time, which is then to

be used by the container interface to authenticate the user. Encryption has to

be setup at task-level too, and can be provided in first instance using self-signed

certificates, or implementing more complex solutions as dynamic certificates

provisioning.

An important detail in the task security context is that Rosetta makes a

strong distinction between standard and power users, through a status switch

in their profile. By default, only the latter can setup custom software contain-

ers using generic task interface protocols other than the HTTP, since handling

security at task level (which is always required in this case) is error-prone and

must be treated carefully. Standard users can therefore add and use custom

software containers for their tasks on the platform only if using an HTTP-based

interface, which is in turn forced to be secured by the proxy service.

For what concerns the tunnel from the web application service to the tasks,

this is protocol-agnostic (above the TCP/IP transport layer) and is either ac-
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complished by a direct connection on a private and dedicated network (e.g.

if using Kubernets) or using an SSH-based TCP/IP tunnel using users’ pub-

lic/private keys, as explained in Section 4, and thus assumed safe.

In terms of web security, we considered potential security risks originating

from cross-site request forgery (CSRF), cross-origin resource sharing (CORS),

cross-site scripting (XSS), and similar attacks. The same origin policy (SOP) of

modern web browsers is already a strong mitigation for these attacks, and all the

platform web pages and APIs (with a few exceptions for internal functionalities)

uses Django’s built-in CSRF token protection mechanism. However, the SOP

policy has limitations [40, 41], in particular in our scenario where users can

run custom (and possibly malicious) JavaScript code from within the platform,

either using the Jupyter Notebooks or by other means (e.g. by setting up a task

serving a web page).

We therefore focused on isolating user tasks from the rest of the platform

even on the web browser side. Using the same domain for both the platform and

the user tasks (e.g. https://rosetta.platform/tasks/1 is indeed definitely

not a viable solution as it does not allow to enforce the SOP policy at all.

Also using dedicated subdomains (e.g. https://task1.rosetta.platform)

has several issues, in particular involving the use of cookies [42, 43, 44]. The

secure-by-design, safe solution is to serve user tasks from a separate domain

(e.g. rosetta-tasks.platform). However, handling and securing subdomains

like task1.rosetta-tasks.platform would require wildcard DNS services and

SSL certificates, which for many institutional domains are not available [45].

For this reason, in Rosetta we opted for an intermediate solution: we serve

user tasks from a separate domain (e.g. rosetta-tasks.platform) assigning

each of them to a different port, under the same SSL certificate. In this way, the

URL to reach the task number 1 at https://rosetta-tasks.platform:7001

can be secured by the same SSL certificate covering the URL for task num-

ber 2 at https://rosetta-tasks.platform:7002, but are treated as different

origins by web browsers. SSL certificates are indeed port-agnostic, while the

SOP (which basically involves the triplet protocol, host and port for defining
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the origin) it is not, thus enabling web browsers to enforce it between the task

1 and 2, and in general securing all of the users tasks against each others.

7. Deployment and use cases

Rosetta is deployed in production at the computing center of INAF - Osser-

vatorio Astronomico di Trieste [46], using an extranal, aggregated authentica-

tion system named RAP [47] and serving a set of different users with different

software requirements.

To support our user community, we offer a pre-defined portfolio of container-

ized applications that span from generic data analysis and exploration tools (as

iPython, R and Julia) to specific Astronomy and Astrophysics codes. These

include common astronomical data reduction software and pipelines as IRAF,

CASA, DS9, Astropy, but also Cosmological simulation visualization and anal-

ysis tools, and project-specific applications and codes. All of them are listed in

the Software section of Rosetta and are accessible from the users’ web browsers

by running a task instance.

In the following we discuss more in detail four different use cases among the

various projects we support: the LOFAR pipelines, the SKA data challenges,

the quasar spectral analysis, and the HPC FPGA bitstream design.

7.1. The LOFAR pipelines

The software collection for the LOFAR community consists in a set of tools

and pipelines used to process LOFAR data, as the Prefactor and DDFacet data

reduction codes [48], for which we created a set of software containers.

A typical run of the LOFAR data processing pipelines holds for several days,

and requires significant computing resources (in terms of RAM, CPUs and Stor-

age) to process terabytes of data (∼ 15TB). Several checks are necessary during

a pipeline run to verify the status of the data processing and the convergence

of the results.

In this context, we are using Rosetta to run the pipelines within a software

container that provides both the pipelines themselves and visual tools to check
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the status of the processing phase. Rosetta tasks run on an HPC cluster man-

aged using the Slurm WMS, which allocates a set of resources in terms of RAM

and CPUs as requested by the scientists in the task creation phase. These tasks

compete with other standard Slurm jobs running on the cluster, thus ensuring

an optimized allocation of the available resources among all users.

Scientist running the pipelines in this mode are not required to interact with

the Slurm WMS or to manually deploy any software on the cluster, instead

they can just rely on Rosetta and update the containers with new software if

necessary.

The container source codes are available online as part of the LOFAR Ital-

ian collaboration 7 and once built are registered to an INAF private container

registry in order to account for both public and private codes as required by the

different LOFAR Key Projects collaborations.

7.2. The SKA data challenges

INAF participated in the SKA Data Challenges8 as infrastructure provider.

The purpose of these challenges is to allow the scientific community to get

familiar with the data that SKA will produce, and to optimise their analyses

for extracting scientific results from them.

The participants in the second SKA Data Challenge analysed a simulated

dataset of 1 TB in size, in order to find and characterise the neutral hydrogen

content of galaxies across a sky area of 20 square degrees. To process and visu-

alize such a large dataset, it was necessary to use at least 512 GB of RAM, and

INAF offered a computing infrastructure where such resources were available.

We used Rosetta to provide simplified access to this computing infrastruc-

ture (an HPC cluster managed using the Slurm WMS) and, as for the LOFAR

pipelines use case, we provided a software container that provided all of the

tools and applications necessary to complete the challenge (as CASA, CARTA,

7https://www.ict.inaf.it/gitlab/lofarit/containers
8https://sdc2.astronomers.skatelescope.org/sdc2-challenge
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WSClean, Astropy and Sofia) in a desktop environment.

Most notably, users were able to ask for specific computing resource require-

ments when starting their analysis tasks (512 GB of RAM, in this case), and

the cluster parallel file system used to store the dataset provided high I/O per-

formance (> 4 GB/s) and plenty of disk space, so that users could focus on

the scientific aspects of the challenge and not worry about orchestration and

performance issues.

7.3. The quasar spectral analysis

Astrocook[49] is a a quasar spectral analysis software built with the aim of

providing many built-in recipes to process a spectrum. While this software is not

necessarily resource-intensive in general, it can require quite relevant computing

power in order to apply the various recipes.

Astrocook comes as a GUI application with some common and less common

Python dependencies, which are sometimes hard to install, and it is a great

example about how to provide a one-click access to a GUI application which

might require some extra computing power using Rosetta.

Figure 13 shows the Astrocook software container running via Rosetta on

a mid-sized, standalone computing resource, and accessed by the web-based

desktop interface.

7.4. The HPC FPGA bitstream design

Field Programmable Gate Arrays (FPGAs) can be used as accelerators in

the context of physics simulations and scientific computing and they have been

adopted as a low-energy acceleration devices for exascale testbeds. One of these

testbeds is ExaNeSt’s prototype [50], a liquid-cooled cluster composed by pro-

prietary Quad-FPGA daughterboard computing nodes, interconnected with a

custom network and equipped with a BeeGFS parallel filesystem. To use this

cluster it is necessary to re-engineer codes and algorithms [51, 52, 53].

The substantial programming efforts required to program FPGAs using the

standard approach based on Hardware Description Languages (HDLs), together
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Figure 13: Astrocook running via Rosetta

with its subsequent weak code portability have long been the main challenges

in using FPGA-enabled HPC clusters as the ExaNeSt’s prototype.

However, thanks to the High Level Synthesis (HLS) approach, FPGAs can

be programmed using high level languages, thus highly reducing the program-

ming effort and and greatly improving portability. HLS tools use high level

input languages as C, C++, OpenCL and SystemC which, after a process in-

volving intermediate analysis, logic synthesis and algorithmic optimization, are

translated into FPGA-compatible code as the so called “bitstream” files.

This last step in particular requires a considerable amount of resources:

128GB of RAM, extensive multi-threading support and 100 GB of hard disk

space are the requirements for creating the bitstream files for the above men-

tioned FPGA-enabled HPC cluster. Moreover, from a user prospective, the

design of an FPGA bitstream requires the interactive use of several GUI appli-

cations (as nearly all the HLS tools) and to let the software work for several

hours.
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Rosetta was adopted as the primary tool for programming INAF’s FPGA

cluster prototype, and suited very well the use case. Thanks to enabling access to

persistent, web-based remote desktops with the required computing and storage

resources, users were indeed capable of using HLS tools from their standard

computing equipment, and to let them work for as many hours as needed, even

if disconnecting and reconnecting the day after.

8. Discussion

In designing and implementing Rosetta we faced two main challenges: sup-

porting custom software packages, libraries and environments, and integrating

with computing resources not natively supporting containerized workloads.

We addressed the first challenge by developing a novel architecture based on

framing user tasks as microservices. This allowed Rosetta to fully support cus-

tom software packages, libraries and environments (including GUI applications

and remote desktops) and together with software containers allowed to ensure

a safe, consistent and reproducible code execution across different computing

resources.

With respect to the second challenge, it has first to be noted that HPC

clusters and data-intensive systems still rely on Linux users for a number of

reasons, including accounting purposes and local permission management. This

means that most of the containerisation solutions born in the IT industry, which

assume to operate as a superuser, are in general not suitable. For this reason,

the Singularity container engine was built to operate exclusively at user-level,

and quickly become the standard in the HPC space.

However, Singularity is not designed to provide full isolation between the

host system and the containers, and by default directories as the home folder,

/tmp, /proc, /sys, and /dev are all shared with the host, environment variables

are exported as they are set on host, the PID namespace is not created from

scratch, and the network and sockets are as well shared with the host. Also, the

temporary file system that Singularity provides in order to make the container
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file system writable (which is required for some software) is a relatively weak

solution, since it is stored in memory (often with a default size of 16MB), thus

very limited in space and easy to fill up.

We had therefore to address all these issues before being able to use Singular-

ity as a container engine from Rosetta. In particular, we used a combination of

command line flags (-cleanenv, -containall, -pid) and ad-hoc runtime sand-

boxing for the key directories which require write access (as the user home),

orchestrated by the agent. This step was key for the success of our approach

and proved to remove nearly all the issues related to running Singularity con-

tainers on different computing systems.

Similarly, we had to work around a series of features lacking in WMSs not

natively supporting containerized workloads (as Slurm), including network vir-

tualization and TCP/IP traffic routing between the containers, all solved using

the agent as explained in the previous sections.

Once we were able to ensure a standardised behaviour of container engines

and WMSs, we were able to make task execution uniform across different kinds

of computing resources, providing the very same user experience. In this sense,

Rosetta can be considered as an umbrella for a variety of computing resources,

and can act as a sort of bridge in the transition towards software containers.

9. Conclusions and future work

We presented Rosetta, a science platform for resource-intensive, interactive

data analysis which runs user tasks as software containers. Its main characteris-

tic lies in providing simplified access to remote computing and storage resources

without restricting users to a set of pre-defined software packages, libraries and

environments.

To achieve this goal, we developed a novel architecture based on framing

user tasks as microservices - independent and self-contained units - which we

implemented as software containers. This approach allowed us to fully support

custom software packages, libraries and environments, including remote desk-
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tops and GUI applications besides standard web-based solutions as the Jupyter

Notebooks. Moreover, adopting software containers allowed for safe, effective

and reproducible code execution, and enabled us to let our users to add and use

their own software containers on the platform.

We also took real-world deployment scenarios in mind, and designed Rosetta

to easily integrate with existent computing resources, even where they lacked na-

tive support for containerized workloads. This proved to be particularly helpful

for integrating with HPC clusters and data-intensive systems.

We successfully tested Rosetta for a number of use cases, including the LO-

FAR data reduction pipelines at INAF computing centers in the context of the

ESCAPE project which funded this work, the SKA data challenges, and other

minor use cases of our user community.

The benefits of seamlessly offloading data analysis tasks to a sort of “vir-

tual workstation”, hosted on a computing system capable of providing CPUs,

RAM and storage resources as per requests were immediately clear, removing

constrains and speeding up the various activities.

Although astronomy and astrophysics remains its mainstay, Rosetta can vir-

tually support any science and technology domain requiring resource-intensive,

interactive data analysis, and it is currently being tested and evaluated in other

institutions.

Future work include adding support for distributed workloads (e.g. MPI,

Ray) and for computing resources with mixed architectures, developing a com-

mand line interface, integrating with data staging solutions and continuing the

implementation efforts for integrating with current and new WMSs (e.g. Torque,

Openshift, Rancher, Nomad, and more).
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